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Abstract

What causes deep recessions and slow recovery? I revisit this question and develop
a macro-�nance asset pricing model that quantitatively matches the salient empirical
features of �nancial crises such as a large drop in the output, a high risk premium, re-
duced �nancial intermediation, and a long duration of economic distress. The model
features leveraged intermediaries who are subjected to both capital and productiv-
ity shocks, and face a regime-dependent exit rate. I show that the model without
time varying intermediary productivity and exit, which reduces to Brunnermeier and
Sannikov [2016], su�ers from a tension between the ampli�cation and the persistence

of �nancial crises. In particular, there is a trade-o� between the unconditional risk
premium, the conditional risk premium, and the probability and duration of crisis.
Features that generate high �nancial ampli�cation also induce faster recovery, at odds
with the data. I show that my model resolves this tension and generates realistic crises
dynamics. The model is solved using a novel numerical method with active machine
learning that is scalable and alleviates the curse of dimensionality.
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1 Introduction

It is well known that recessions are marked by a high equity risk premium, a lower in-
vestment rate, and a lower output. The great recession of 2007-2008 emphasized the im-
portance that the �nancial intermediaries play in propagating shocks to the real economy.
Since then, there has been a growing literature with the leverage of intermediaries as a key
factor in moving the asset prices and the real economy.1 Figure (1) shows the evolution
of investment rate, the equity risk premium, and the leverage of bank holding companies
(BHC) in the United States. Recessions that feature a sharp decrease (increase) in the in-
vestment rate (risk premium) also feature a sharp increase in the leverage of BHCs. While
the intermediaries take a central role in the recent macro-�nance literature, the �nancial
constraints that they face are of particular importance (see, example, Brunnermeier and
Sannikov [2014] (BS2014), He and Krishnamurthy [2013], Di Tella [2017]). In these mod-
els, the �nancial constraints bind only in certain times which lead to non-linearity in the
asset prices. In normal times, the �nancial markets facilitate capital allocation to the most
productive agents. In such states, the intermediaries are su�ciently capitalized and the
premium on the risky asset is low. In bad times, the �nancial constraints bind and capital
gets misallocated to the less productive agents, who do not value capital as much. This
leads to a deterioration of intermediary balance sheets and pushes the system into the crisis
region where the premium on the risky asset shoots up. While these models explain a high
risk premium in the crisis periods, the contribution has largely been qualitative with the
exception of He and Krishnamurthy [2019](HK2019), and Krishnamurthy and Li [2020].

The contribution of this paper is two-fold. First, I build an overlapping-generation
incomplete-market asset pricing model with stochastic productivity and exit of the inter-
mediaries that occasionally generates capital misallocation and �re-sales. I solve the model
using a novel deep learning based numerical method that encodes the economic information
as regularizers.2 This methodology, as shown in the companion paper Gopalakrishna [2020],
is scalable and can be applied to similar high dimensional problems. Second, I show that
a simpler model with constant productivity and no exit of intermediaries, which reduces
to Brunnermeier and Sannikov [2016](BS2016) with recursive preferences, su�ers from a
tension between the ampli�cation and the persistence of �nancial crises. In particular,
there is a trade-o� between the unconditional risk premium, the conditional risk premium,
and the probability and duration of crisis. The model with stochastic productivity and
regime-dependent intermediary exit rate resolves this tension and provides reasonable crisis
dynamics and a better match to the empirical asset pricing moments. More speci�cally,
my model simultaneously generates a realistic unconditional risk premium, conditional
risk premium, probability of crisis, and the duration of crisis without compromising on the
other dimensions such as the GDP growth rate, and the intermediary leverage patterns.
The model also generates a higher time variation in the risk premium, the risk free rate,
and the investment rate compared to the benchmark model.

The literature on incomplete market macro-�nance models, following BS2014 and BS2016,
assumes a higher productivity rate of experts relative to households, but it is constant
throughout the state space. I depart from this assumption and consider a time varying
productivity rate of experts. A negative shock that hits the capital reduces the size of

1See, for example, Brunnermeier and Sannikov [2014], He and Krishnamurthy [2013], Di Tella [2017],
Adrian et al. [2014], Phelan [2016], Moreira and Savov [2017], etc.

2Regularizer is a commonly used tool in machine learning to reduce over�tting. See Glorot and Bengio
[2010a] for details.
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Figure 1: The red line (leverage) corresponds to right axis and the remaining lines cor-

respond to the left axis. Leverage is computed from Federal �ow of funds data. The risk

premium is computed from the regression Re
t+1 = a+β ∗Dt/Pt+βrec ∗1Rec ∗Dt/Pt+βfin ∗

1fin ∗Dt/Pt+ εt where R
e
t+1 is the one-year ahead excess return on S&P500, Dt/Pt denotes

dividend yield on S&P500, and the dummy variables are �ag for recessionary and �nan-

cial crisis periods. The shaded region in the graph correspond to the NBER recessionary

periods.

the experts and pushes down the productivity rate. A shrinking balance sheet of experts
causes them to loose the comparative advantage that they hold over the households due
to loss in economies of scale. As a result, when the wealth share of the experts becomes
su�ciently low such that the crisis region is entered, it gets harder for the experts to regain
wealth quickly and revert to the normal region. In addition, I assume an exogenous regime-
dependent exit rate of experts which can be thought of as a parsimonious way of capturing
bank defaults. The data from Federal Deposit Insurance Corporation (FDIC) shows that
a total of 297 banks failed between the period 2009-2010 in the United States, which is a
strikingly large number compared to 25 bank failures in the 7 years that preceded the crisis,
and 23 bank failures between 2015-2020.3 Similarly, when measured by default volume,
around 80% of the Moody's rated issuers defaults in the year 2008 came from the �nancial
institutions.4 Figure (2) shows the evolution of bank failures from 2001 till 2020. Both in
terms of the count and the default volume, bank failures during the Great recession were

3Source: https://www.fdic.gov/bank/historical/bank/.
4Source: Moody's Corporate Default and Recovery Rates, 1920-2008. Financial institutions include

Bank holding companies, Real estate and insurance companies.
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Figure 2: Bank failures from 2001 till 2020. The solid line indicates the number of bank

failures and the dashed line indicates the default volume. The shaded region represent the

NBER recessionary period. Source: Federal Deposit Insurance Corporation.

far greater than the other years.5 While a lot of non-�nancial institutions failed too during
the Great recession, the fact that 80% of Moody's issuer default in terms of volume came
from �nancial institutions alone indicates that the intermediaries default to a large extent
particularly during �nancial crises.6 I capture this empirical phenomenon in reduced form
through an exogenous regime-dependent intermediary exit rate. While the crisis point is
endogenously determined in my model, once the system enters the crisis state, a higher
fraction of the experts exit than when the system is in the normal region.

The model with two state variables- wealth share of the experts, and productivity of the
experts, is solved using a deep learning based numerical algorithm that takes advantage of
the universal approximation theorem by Hornik et al. [1989], which states that a neural
network with one hidden layer can approximate any Borel measurable function. This
method is scalable since it alleviates the curse of dimensionality that plagues the �nite-
di�erence schemes in higher dimensions. The main di�culty that arises from the grid-
based solutions such as �nite-di�erence schemes is the combination of an explosion in the
number of grid points and the need for a reduced time step size as the dimensions grow
large. My solution side-steps these limitations since it is mesh-free. I rely on Tensor-�ow, a
deep learning library developed by Google Brain, that computes the numerical derivatives
e�ciently. This algorithm dominates the �nite-di�erence method used in BS2016, Hansen
et al. [2018], etc., since it has the advantage of being easier to code when scaling to higher
dimensions. Appendix A.5.1 shows that the solution obtained from this algorithm matches

5The list of banks include only those that are insured by the FDIC. Failure of investment banks such
as Lehman Brothers in 2008 are not included. Source: Federal Deposit Insurance Corporation.

6Note that I use the terms `intermediaries' and `experts' interchangeably.
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the solution from the �nite di�erence method when applied to a simpler model with one
state variable. I also demonstrate how one can modify few lines of code and jump from a low
to a high dimensional state space. The companion paper Gopalakrishna [2020] discusses
the algorithm in detail and applies it to similar problems with the number of dimensions
as high as �ve.

In the absence of a stochastic productivity and intermediary exit, the model reduces to
BS2016 augmented with OLG and recursive preferences. The assumption of OLG o�ers
a non-degenerate stationary distribution of the state variable7 (similar to Gârleanu and
Panageas [2015]), while recursive preference helps with obtaining realistic asset pricing
moments. I quantify this benchmark model, similar in spirit to HK2019 and Krishna-
murthy and Li [2020] but with notable di�erences. The model that I consider has both the
households and the experts consuming by solving an in�nite horizon optimization prob-
lem, whereas, in HK2019 the experts do not consume and solve a myopic optimization
problem. Both models feature non-linear asset prices arising due to occasionally binding
�nancial intermediary constraints. However, the transition from the normal to the crisis
state is smooth in HK2019. On the contrary, the model that I consider, similar to BS2016,
features an endogenous jump in the risk prices that re�ects the fact that periods prior
to �nancial crises are typically calm with an exceedingly low risk premium (Baron and
Xiong [2017]) and rises dramatically once the crisis period begins. The endogenous jump
in the model is caused by the �re-sale e�ect since the households have a lower valuation
of the capital. The e�ect of �re sales on the asset markets is crucial in times of distress,
as is emphasized in Kiyotaki and Moore [1997], Shleifer and Vishny [2011], and Kurlat
[2018]. Importantly, due to the endogenous jump, the point in the state space at which the
�nancial crisis occurs is well-de�ned. In models where the transition is smooth, one has
to rely on an exogenously de�ned threshold at which the system enters the crisis region.
Krishnamurthy and Li [2020] considers the model with an endogenous jump similar to this
paper but focuses on matching credit spreads across several �nancial crisis episodes with
an emphasis on the pre-crisis froth in credit markets. While the agents in their model
have log utility with the capital subject to both Brownian and Poisson shocks, I consider a
recursive utility function and focus on matching a broader set of macroeconomic and asset
pricing moments such as the intermediary leverage patterns, the risk-free rate, the equity
risk premium, the investment rate, the GDP growth rate, the probability and duration of
crisis among others. Recursive utility has the advantage of separating the risk aversion
from the IES (Bansal and Yaron [2004]) and also helps with obtaining better asset pricing
moments.

Models of intermediary asset pricing highlight the persistence and the ampli�cation of
shocks caused by the leveraged agents. A direct measure of persistence is the duration of
crisis. A 10% probability of crisis, with an average of 3 years duration is a lot di�erent
than the same probability with 1 year duration since in the former case, the capital moves
slower to the productive agents. It is common for asset pricing models in the literature to
explain a large risk premium with highly risk averse agents.8 However, whether one can
quantitatively generate a large risk premium for a realistic occupation time in the distressed
region is an important question that is overlooked in the literature. The quanti�cation of
the benchmark model done in this paper addresses this question and reveals a trade-o�

7The OLG assumption provides a non-degenerate distribution even when there is no discount rate
heterogeneity.

8For example, the risk aversion of the households is set to 10 in Gârleanu and Panageas [2015]. Such
high upper bound for the risk aversion is also used in Mehra and Prescott [1985].
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between the probability and duration of crises and the risk aversion of agents. A high risk
aversion increases the risk premium that the experts earn in the normal region and does
not cause enough deterioration in their net worth to have a realistic occupation time in
the crisis state. Moreover, as soon as the system enters the crisis region, the risk premium
spikes, enabling the experts to gain wealth quickly and revert to the normal regime. With
larger values of risk aversion, the experts build wealth even faster resulting in a higher speed
of reversion to the normal state. This poses a direct challenge to the heterogeneous agent
models with leveraged agents that are calibrated with high risk aversion to generate a large
risk premium. The benchmark model has its strengths in capturing the non-linearity of the
asset prices, the output growth, and the leverage patterns of intermediaries. The biggest
weakness lies in generating a realistic duration of crisis, non-linearity in the investment
rate, and the level of unconditional risk premium. The capital price does not drop enough
in the crises for the investment rate to fall. The richer model with stochastic productivity
and regime-dependent exit rate of the experts resolves this tension and generates reasonable
asset pricing moments. In particular, the time varying productivity of the experts helps to
produce realistic volatility of the risk premium, the investment rate, and the risk free rate,
while the regime-dependent exit rate generates reasonable ampli�cation and persistence
simultaneously. Embedding these two features that has empirical support brings the model
closer to the data in important aspects.

Related Literature: This paper relates to several strands of the literature. On the
modeling front, it is most closely related to BS2016 who introduce a continuous time
macro-�nance model based on capital misallocation and �re-sales. It �ts within a large
body of intermediary based asset pricing models such as BS2014, He and Krishnamurthy
[2013], Di Tella [2017], Adrian and Boyarchenko [2012], Moreira and Savov [2017], etc.
While BS2014 assume risk neutral agents with an exogenous interest rate, the agents in
BS2016 are risk averse with CRRA utility function, and the risk free rate is endogenous.
The capital misallocation in BS2016 occurs due to bad shocks and the subsequent �re-sale
e�ect. Moll [2014] analyses a model where the inability of the productive agents to lever
up due to collateral constraints causes the capital misallocation.

The empirical evidence for intermediary-based asset pricing highlights the role that
the banks and the hedge funds play in pricing assets (He et al. [2017a], and Adrian et al.
[2014]). While these papers provide a theory based on the intermediary leverage as a
motivation for empirical �ndings, the literature that tightly tests the ability of general
equilibrium asset pricing models with �nancial frictions to match the data is sparse. Two
related papers that attempt to �ll the gap are Muir [2017], and HK2019. However, the
experts in their model do not consume and solve a myopic optimization problem, whereas,
in my model both the households and the experts consume a fraction of the total output
by solving an in�nite horizon optimization problem. While HK2019 focus on matching the
non-linearity of their model with the data and consider an exogenously de�ned probability
of crisis, the goal of this paper goes beyond matching just the non-linearity, and deals with
an endogenous crisis boundary- a slightly more daunting task since there is one less degree
of freedom. In this regard, this paper comes closer to Krishnamurthy and Li [2020] who
attempt to match the pre-crisis froth in the credit market through a Bayesian learning
model. Muir [2017] analyses risk premia during downturns for a large panel of countries
and �nds that �nancial crises are crucial in understanding the variation in risk premium.
Also, the intermediary based asset pricing model is shown to fare better compared to
the consumption based representative agent models with long run risk (Bansal and Yaron
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[2004]), habit (Campbell and Cochrane [1999]), and rare disaster (Barro [2006]) features.
Hansen et al. [2018] provide a framework that nests several models based on �nancial

frictions. Even though the frictions prevent the economy from achieving a �rst-best out-
come, their model features a dynamically complete market since the households can hedge
their risk exposures through the derivative market. Their contribution is largely to provide
qualitative insights by comparing di�erent nested models, whereas, this paper is guided
by quantitative analysis. While they consider a multi-dimensional problem with auxiliary
shocks to the volatility and the long run growth, my model has stochastic productivity and
exit rate of experts. More importantly, I conduct extensive simulations to test the model
performance in matching a broader set of the macroeconomic and the asset pricing mo-
ments. My model assumes that the productivity of experts is a function of its size (wealth
share of experts) which holds empirical relevance (Hughes et al. [2001], Feng and Serletis
[2010], and Berger and Mester [1997]). I consider a parsimonious way to capture bank
defaults through an exogenous exit rate of experts which complements a large literature on
the endogenous bank runs and defaults (Gorton and Ordoñez [2014], Gertler et al. [2019],
Li [2020]).

Lastly, this paper also relates to the literature on global solution methods for het-
erogeneous agent models using continuous time machinery (see Achdou et al. [2014b] for
an overview). The assumption that the agents can consume and invest continuously in
response to their instantaneous change in wealth not only greatly simpli�es the computa-
tion, it also re�ects the reality that people do not take these decisions only at the end of
a quarter. Another advantage of the continuous-time method is the analytical tractability
of equilibrium prices up-to a coupled or decoupled system of partial di�erential equations.
Achdou et al. [2014a], BS2016, and Fernández-Villaverde et al. [2020] o�er a solution tech-
nique involving implicit scheme with up-winding to solve the PDEs that ensures faster
convergence. D'Avernas and Vandeweyer [2019] document that �nite di�erence methods
are di�cult to implement in higher dimensions not only because of the curse of dimension-
ality but also due to the di�culty in preserving the monotonicity of the �nite di�erence
scheme. They o�er a solution method based on Bonnans et al. [2004] that involves rotating
the state space and �nding the right direction to approximate the cross partial derivatives
such that the monotonicity of the scheme is preserved. With the advancements in machine
learning, recent papers have turned to neural network to solve equilibrium models. Duarte
[2017] considers a method based on deep learning to solve asset pricing problems in high
dimensions. Fernández-Villaverde et al. [2020] solves for the high dimensional law of mo-
tion of households using a deep neural network.9 The algorithm proposed in this paper is
similar in spirit but also incorporates prior information from the crisis boundary as regu-
larizers and is particularly geared towards solving heterogeneous agent incomplete market
problems with capital misallocation and endogenous jump in prices. It also seeks inspi-
ration from active machine learning where the algorithm learns to sample in an informed
manner. To the best of my knowledge, this is the �rst paper to apply a deep learning based
algorithm to solve such type of a model.

The paper is organized as follows. Section 2 introduces the model. Section 3 presents the
benchmark model and quanti�es it to shed light on the tension between the ampli�cation
and the persistence of crises. Section 4 shows that the model with stochastic productivity
and exit rate of experts resolves the tension and brings the model closer to the data. Section

9There is a substantial literature on the deep-learning techniques to solve PDEs in Applied Mathe-
matics, which I cover in the companion paper Gopalakrishna [2020]. For the application of deep learning
techniques to solve discrete time DSGE models, see Azinovic et al. [2019].
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5 concludes. The proofs and details on numerical methodology can be found in Appendix
A.
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2 Model

In this section, I present a heterogeneous agent model with stochastic productivity and exit
rate of the experts. There is an in�nite horizon economy with a continuum of agents, who
are of two types: Household (H) and Expert (E). The aggregate capital in the economy is
denoted by kt, where t ∈ [0,∞) denotes time. Within each group, the agents are identical
and hence we can index the representative household and the expert by h ∈ H and e ∈ E
respectively.10 The experts can issue risk-free debt, and obtain a higher return to holding
capital as they are more productive than the households. The friction is such that the
experts have to retain at least some amount of equity on their balance sheet. In the
absence of this friction, it is desirable for the experts to hold all capital as they are more
productive users. Also, the agents are precluded from shorting the risky capital. The
production technology can be written as

yj,t = aj,tkj,t j ∈ {e, h} (1)

where the capital evolves as11

∂kj,t
kj,t

= (Φ(ιj,t)− δ)dt+ σdZk
t (2)

with ιj,t as the investment rate, and {Zt ∈ R;Ft,Ω} is the standard Brownian motions
representing the aggregate uncertainty in (Ω,P,F). The parameter σ denotes the exoge-
nous volatility of capital process. The investment function Φ(·) is concave and captures
the decreasing returns to scale, and δ is the depreciation rate of capital. As in BS2016,
Φ(·) captures the technological illiquidity. The depreciation rate is the same for both the
households and the experts. I assume that the investment cost function takes the logarith-

mic form12 Φ(ι) =
log(κι+ 1)

κ
where κ is the adjustment cost parameter that controls the

elasticity of the investment technology.
I assume that the productivity of the experts is governed by the following stochastic

di�erential equation

dae,t = π(âe − ae,t)dt+ ν (ae − ae,t)(ae,t − ae)︸ ︷︷ ︸
σae,t

dZa
t (3)

where the Brownian shock dZa
t has a correlation ϕdt with the Brownian shock dZk

t with
ϕ > 0. That is, the expert productivity follows an Ornstein�Uhlenbeck process with
stochastic volatility such that it moves between a lower level ae and an upper level āe with
a persistence parameter π and mean âe ∈ (ae, āe). Since ah < ae < āe, the productivity of
the experts is always higher than that of the households even though it �uctuates between
ae and āe.

13 The capital prices qt follows

∂qt
qt

= µqtdt+ σq,kt dZk
t + σq,at dZa

t

10This is also due to the homogeneity of preferences of agents within each group as explained later.
11Note that kj,t is the capital held by agent j.
12This is a valid investment cost function since Φ(0) = 0, Φ′ > 0, and Φ′′ ≤ 0.
13I denote (aj,t; j ∈ {e, h}) to have concise notation but it is to be understood that ah,t is just a constant

ah, whereas ae,t follows equation (3).
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The return process for each type of agent is given by

∂Rj,t =

(
µqt + Φ(ι)− δ + σσq,kt + ϕσσq,at +

aj,t − ιt
qt︸ ︷︷ ︸

µRj,t

)
dt+ (σq,kt + σ)dZk

t + σq,at dZa
t (4)

The aggregate output in the economy is given by

yt = Atkt

where kt =

∫
E∪H

kj,t and At is the aggregate dividend that satis�es

At =

∫
H
ah
kh,t
kt

+

∫
E
ae,t

ke,t
kt

Let the capital share held by the expert sector be denoted by

ψt :=

∫
E kj,t∫

H∪E kj,t

The experts and the households trade capital and the experts face a skin-in-the-game
constraint that forces them to retain at least a fraction χ ∈ [0, 1] of the equity on their
balance sheet. The agents can also trade in the risk free security that pays a return rt that
is determined in the equilibrium. The stochastic discount factor (SDF) process for each
type of agent is given by

∂ξj,t
ξj,t

= −rtdt− ζkj,tdZk
t − ζaj,tdZa

t (5)

where ζkj,t and ζ
a
j,t are the prices of risk for the shocks dZk

t and dZa
t respectively.

Preferences and equilibrium: I assume that the agents have recursive utility with
IES=1. That is, the utility is given by

Uj,t = Et

[ ∫ ∞
t

f(cj,s, Uj,s)ds

]
with

f(cj,t, Uj,t) = (1− γj)ρjUj,t

(
log(cj,t)−

1

1− γj
log
(

(1− γj)Uj,t
))

(6)

where γj and ρj are the risk aversion and the discount rate of agent j respectively. Following
Gârleanu and Panageas [2015], I assume that some agents are born and die at each time
instant with a probability λd. Let z̄ and 1− z̄ denote the proportion of the experts and the
households that are born at each instant respectively. The death risk is not measurable
under the �ltration generated by the Brownian process Ft and the agents do not have
bequest motives. Hence, once the agents die, the wealth is pooled and distributed on a
pro-rata basis. As a result of the death risk, the rate of time preference parameter ρj can
be thought of as inclusive of the death rate λd. I abstract away from the insurance markets
to hedge the death risk, similar to Hansen et al. [2018] for simplicity. I assume that at
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each time instant dt, a fraction τtdt of the experts become households. I allow the exit
rate to be regime-dependent such that τt is larger in the crisis region.14 This assumption is
a parsimonious way to capture bank failures, which are particularly high during �nancial
crises as seen in Figure (2). The agents optimize by maximising their respective utility
functions, subject to the wealth constraints15 starting from some initial wealth wj,0. They
solve

sup
cj,t,χt,ψt,ιj,t

Et

[ ∫ ∞
t

f(cj,s, Uj,s)ds

]
s.t.

dwj,t
wj,t

= (rt −
cj,t
wj,t

+
χtψt
zt

εj,t)dt (7)

+
χtψt
zt

(σ + σq,kt )dZk
t +

χtψt
zt

(σq,at )dZa
t ; j ∈ {e, h}

where ιj,t, χt, ψt denote the investment rate, the experts' inside equity share, and the ex-
perts' capital share respectively, and

εe,t := ζke,t(σ + σq,kt ) + ζae,tσ
q,a
t + ϕ(ζae,t(σ + σq,kt ) + ζke,tσ

q,a
t ) (8)

εh,t := ζkh,t(σ + σq,kt ) + ζah,tσ
q,a
t + ϕ(ζah,t(σ + σq,kt ) + ζkh,tσ

q,a
t ) (9)

There are two prices of risk for each type of the agent: ζkj,t and ζ
a
j,t, corresponding to the

capital shock and the productivity shock respectively. By borrowing in the risk free market
at a rate rt and investing in the risky capital, they obtain the prices of risk ζkj,t and ζ

a
j,t.

There are in fact an in�nite number of agents in the economy but each individual in type
E and H are identical, hence they have the same preferences. Therefore, one can seek
an equilibrium in which all agents in the same group take the same policy decisions. For
completeness, I present the full version of the equilibrium �rst.

De�nition 2.1. A competitive equilibrium is a set of aggregate stochastic processes
adapted to the �ltration generated by the Brownian motions Zk

t and Za
t . Given an initial

distribution of wealth between the experts and households, the processes are prices (qt, rt),
policy functions (cj,t, ιj,t, χt, ψt; j ∈ {e, h}) and net worth (wj,t; j ∈ {e, h}), such that

• Capital market clears:
∫
H

(1− ψt)kj,tdj +

∫
E
ψtkj,tdj =

∫
H∪E

kj,tdj ∀t

• Goods market clear:
∫
H∪E

cj,tdj =

∫
H∪E

(aj,t − ιj,t)kj,tdj ∀t

•
∫
H∪E

wj,tdj =

∫
H∪E

qtkj,t ∀t

Asset pricing conditions: The equilibrium conditions map the optimal consumption,
the investment, the capital share, and the capital price to the history of Brownian shocks

14These are unexpected changes and hence they don't a�ect the optimization problem, although it will
have an impact on the wealth share. Gomez [2019] uses a similar assumption that applies to the leveraged
wealthy households.

15Note that since all agents within the same group are identical, the wealth equation is presented for
the aggregated agents. For wealth dynamics of individual agent within the group, see Appendix A.1.2.
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Zk
t and Z

a
t through the state variables (zt, ae,t). The agents choose the optimal investment

rate by maximizing their return to holding the capital. That is, ιj,t solves

max
ιj,t

Φ(ιj,t)−
ιj,t
qt

The optimal investment rate is obtained as

ι∗j,t =
qt − 1

κ
(10)

The investment rate is the same for both types of the agents since it depends only on
qt. This is a standard `q-theory' result which implies a tight relation between the price of
capital and the investment rate. Thus, the growth rate of the economy is endogenously
determined by the investment rate through the capital price. A higher price increases the
investment rate, and causes a hike in the growth rate of output (since Φ′(·) > 0). The
asset pricing relationship for the experts is given by16

ae,t − ιt
qt

+ Φ(ιt)− δ + µqt + σσq,kt + ϕσσq,at − rt = χtεe,t + (1− χt)εh,t (11)

where εj,t is de�ned in (8). The experts will issue maximum allowed equity χ if the premium
demanded by them is higher than that demanded by the households. The pricing condition
of the households is given by

ah − ιt
qt

+ Φ(ιt)− δ + µqt + σσq,kt + ϕσσq,at − rt ≤ εh,t (12)

where the equality holds if ψt < 1.
I solve for the decentralized Markov equilibrium by summarizing the system in terms

of two state variables: wealth share of the experts denoted by zt, and the productivity of
the experts ae,t.

17 The wealth share is de�ned as

zt =
we,t
qtkt

∈ (0, 1)

where we,t =

∫
E
wj,t and kt =

∫
E
kj,t +

∫
H
kj,t. Moving forward, I write xh,t and xe,t to

denote the aggregated quantity
∫
H
xj,t and

∫
E
xj,t respectively.

18

Proposition 1. The law of motion of the wealth share of experts is given by

∂zt
zt

= µztdt+ σz,kt dZk
t + σz,at dZa

t (13)

16This can be shown using a Martingale argument. See Appendix A.1.1 for the proof.
17All relevant objects scale with the capital kt and hence we can summarize the economy in just two

state variables.
18This is a slight abuse of notation. Since all agents within the same group are identical, we can think

of xe,t as the quantity pertaining to a representative expert.
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where

µzt =
ae,t − ιt
qt

− ce,t
we,t

+

(
χtψt
zt
− 1

)(
(σ + σq,kt )(ζ̂1

e,t − (σ + σq,kt )) + σq,at (ζ̂2
e,t − σ

q,a
t )− 2ϕ(σ + σq,kt )σq,at

)
+ (1− χt)

(
(σ + σq,kt )(ζ̂1

e,t − ζ̂1
h,t) + σq,at (ζ̂2

e,t − ζ̂2
h,t)
)

+
λd
zt

(z̄ − zt)− τt

ζ̂1
j,t = ζkj,t + ϕζaj,t; j ∈ {e, h}

ζ̂2
j,t = ζaj,t + ϕζkj,t; j ∈ {e, h}

σz,kt =

(
χtψt
zt
− 1

)
(σ + σq,kt )

σz,at =

(
χtψt
zt
− 1

)
σq,at

Proof: See Appendix A.1.2.

The parameters λd and z̄ denote the death rate and mean proportion of experts in the
economy respectively at each time instant. The exit rate τt enters the drift of the wealth
share.

2.1 Model solution

The solution method is reminiscent of the value function iteration with an inner static
loop to solve for the equilibrium quantities (χt, ψt, qt, σ

q,k
t , σq,at ) using a Newton-Raphson

method, and an outer static loop to solve for the value functions Jj,t using a deep neural
network architecture. The �rst step starts from a time T and solves for the equilibrium
policies from the value function that is set to take an arbitrary value. This is analogous
to `policy improvement' in the reinforcement learning literature. In the second step, the
neural network solves for the value function taking the policies computed in �rst step as
given, which is then used to update the policies in the subsequent step. This corresponds to
the `policy evaluation' in the language of reinforcement learning.19 The two-step procedure
is performed repeatedly until the value function converges. I �rst present and discuss the
equilibrium policies in the static loop and then discuss the deep learning methodology used
in the outer loop. Further details on equilibrium quantities and algorithm are relegated to
Appendix A.1.5.

Static decisions and HJB equations: The value function is given by Uj,t and the HJB
for optimization problem (7) can be written as

sup
cj,t,ιt,θj,t

f(cj,t, Uj,t) + E[dUj,t] = 0 (14)

Homothetic preferences imply that the value function is of the form

Uj,t = Jj,t(zt, ae,t)
k

1−γj
j,t

1− γj
19While there are similarities between the value function iteration and reinforcement learning, the state

space in my model is known ahead. A large part of the reinforcement learning deals with exploring new
state space which is not relevant for the setup considered in this paper.
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with the process for the stochastic opportunity set de�ned as

dJj,t
Jj,t

= µJj,tdt+ σJ,kj,t dZ
k
t + σJ,aj,t dZ

a
t

The HJB equation is computed as

sup
cj,t,ιt

1

1− γj
µJj,t + Φ(ιt)− δ −

1

1− γj
σ2 + (σσJ,kj,t + ϕσσJ,aj,t )

+ ρj

(
log

cj,t
wj,t
− 1

1− γj
log Jj,t + log(qtzt)

)
(15)

Proposition 2. The optimal consumption policy, investment policy, and prices of risk are
given by

ĉj,t = ρj (16)

ιj,t =
qt − 1

κ
(17)

ζke,t = −σJ,ke,t + σz,kt + σq,kt + γeσ (18)

ζae,t = −σJ,ae,t + σz,at + σq,at (19)

ζkh,t = −σJ,kh,t −
1

1− zt
σz,kt + σq,kt + γhσ (20)

ζah,t = −σJ,ah,t −
1

1− zt
σz,at + σq,at (21)

Proof: See Appendix A.1.3.
The consumption-wealth ratio ĉj,t is constant and is equal to the discount rate be-

cause IES=1. The optimal policies are given in terms of the other equilibrium quantities
(Jj,t, χt, ψt, qt, ξt) which are found by solving for a Markov equilibrium in the state space
(zt ∈ (0,1), ae,t ∈ (ae, āe)).

De�nition 2.2. A Markov equilibrium in (zt ∈ (0,1), ae,t ∈ (ae, āe)) is a set of adapted
processes q(zt, ae,t), r(zt, ae,t), Je(zt, ae,t), Jh(zt, ae,t), policy functions ĉe(zt, ae,t), ĉh(zt, ae,t), ψ(zt, ae,t),
and state variables {zt, ae,t} such that

• Jj,t solves the HJB equation and corresponding policy functions ĉj,t, ψt

• Markets clear

(ĉe,tzt + ĉh,t(1− zt))qt = ψt(ae,t − ιt) + (1− ψt)(ah − ιt)

we,tzt + wh,t(1− zt) = 1

• zt and ae,t satisfy (13) and (3) respectively

Proposition 3. The total return variance is given by

||σRt ||2 := (σ + σq,kt )2 + (σq,at )2 =
σ2 +

(σ2
ae,t

qt

∂qt
∂ae,t

)2(
1− 1

qt

∂qt
∂zt
zt
(
ψtχt
zt
− 1
))2 (22)
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Proof. See Appendix A.1.4.
The �rst term in the numerator on the R.H.S of equation (22) re�ects the fundamental
volatility while the second term captures the contribution of productivity shocks. There

are two e�ects that drive the volatility: (a) Since
∂qt
∂zt

> 0, and
ψtχt
zt

> 1 in equilibrium, the

denominator contributes towards a higher return volatility than the fundamental volatility

σ (b) Since
∂qt
∂ae,t

> 0, the second part in the numerator adds to the ampli�cation caused

by (a).

2.1.1 Neural network solution method

The outer loop involves solving for a de-coupled system of quasi-linear PDEs- one for
the households and one for the experts, taking as given the equilibrium quantities that are
determined from the static loop. The PDE obtained by applying Ito's lemma to Jj,t(zt, ae,t)
and using the HJB equation (15) is20

µJJ =
∂J

∂t
+
∂J

∂z
µz +

∂J

∂a
µa +

1

2

∂2J

∂z2

(
(σz,k)2 + (σz,a)2 + 2ϕσz,kσz,a

)
+

1

2

∂2J

∂a2
σ2
a

+
∂2J

∂zt∂a

(
zσz,kσaϕ+ σaσ

z,a
)

(23)

with the boundary conditions

J(z, a, T ) = J0 (24)

∂J(0, a, t)

∂zt
=
∂J(1, a, t)

∂zt
= 0

∂J(z, ae, t)

∂ae,t
=
∂J(z, āe, t)

∂ae,t
= 0

I take advantage of the universal approximation theorem that states that a neural network
with at least one hidden layer can approximate any Borel measurable function, and solve
for the function J(z, a, t) that is governed by the PDE (23). Starting from an arbitrary
terminal value at time T, the task is to solve for J(z, a, T − ∆t). The PDE coe�cients
and the terminal value are in the form of a grid but not all grid points are required in the
algorithm as will be explained. While the space of admissible solutions to the function given
the sample data from terminal value and other boundary conditions is potentially large, I
use the residuals from PDE and the boundary conditions as regularizers that constrain the
space to a manageable size. This encoding of prior information into the learning algorithm
ampli�es the information content from the economic problem and makes it possible for the
deep neural network to head towards the correct solution even with the limited training
sample.

20I ignore the time and agent indices in order to avoid cluttering of notations. The productivity of the
expert ae,t, and the volatility σae,t are denoted as a and σa for simplicity in the PDEs.
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Consider the PDE residual from (23)

f :=
∂J

∂t
+
∂J

∂z
µz +

∂J

∂a
µa +

1

2

∂2J

∂z2

(
(σz,k)2 + (σz,a)2 + 2ϕσz,kσz,a

)
+

1

2

∂2J

∂a2
σ2
a

+
∂2J

∂z∂a

(
zσz,kσaϕ+ σaσ

z,a
)
− µJJ (25)

Starting from a neural network Ĵ(z, a, t; Θ) parameterized by an arbitrary Θ, the optimal
parameter Θ∗ that ensures that Ĵ(z, a, t; Θ) is close to J is obtained by mimimizing the
following loss function

L = λfLf + λjLj + λbLb + λcLc (26)

where21

PDE loss Lf =
1

Nf

Nf∑
i=1

|f(zif , a
i
f , t

i
f )|2 (27)

Bounding loss-1 Lj =
1

Nj

Nj∑
i=1

|Ĵ(zij, a
i
j, t

i
j)− J i0|2 (28)

Bounding loss-2 Lb =
1

Nb

Nb∑
i=1

|∇Ĵ(zib, a
i
b, t

i
b)|2 (29)

Crisis loss Lc =
1

Nc

Nc∑
i=1

|Ĵ(zic, a
i
c, t

i
c)− J i0|2 (30)

The parameters (λf , λj, λb, λc) are weights attached to the corresponding losses, (zij, a
i
j, t

i
j, J

i
0)
Nj
i=1

and (zib, a
i
b, t

i
b)
Nb
i=1 denote the boundary training data, and (zif , a

i
f , t

i
f )
Nf
i=1 denote the col-

location points for the PDE residual f(z, a, t). The crisis boundary collocation points
(zic, a

i
c, t

i
c)
Nc
i=1 are sampled from the neighborhood of state space where �re-sale gets initiated,

that is endogenously determined in the static inner loop. The quantities (Nf , Nj, Nb, Nc)
denote the number of points to minimize the PDE loss, the two bounding losses, and the
crisis boundary loss respectively. By encoding the crisis boundary loss, the neural network
is forced to learn better around the crisis threshold which is where the policy functions
are highly non-linear. The sampling is done uniformly with replacement in each domains.
The construction of crisis loss is inspired from active machine learning (Settles [2012]), a
budding area in the arti�cial intelligence literature. Active learning algorithms work by
providing better training samples at each iteration to ensure quick convergence. At every
iteration, the points in the state space where crisis occurs might change, and sampling more
points from around this region dynamically provides better training samples. I consider
arti�cial collocation points for time such that {ti} ∈ [ti − ∆ti, ti] are sampled uniformly
so as to reduce errors in numerical derivatives with respect to the time dimension. The
number of collocation points (Nj, Nb, Nf , Nc, Nt) in total need not be large and is taken to
be 10% of the total grid size. This makes the algorithm mesh-free and scalable to higher
dimensions.

21I write ∇Ĵ to denote

[
∂Ĵ

∂z

∂Ĵ

∂a

]T
.
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Value

No. of hidden layers 4
Hidden units [30,30,30,30]
Activation function Tanh
Optimizer ADAM + L-BFGS-B
Learning rate 0.01
Loss function weights(λf , λj, λb, λc) {1,1,0.001,1}
Batch size Full batch

Table 1: Network architecture

Figure 3: Neural network architecture. The quantities I and Ω denote the domain of the

state space pertaining to the initial and boundary conditions respectively. The domain Ωc

refers to the crisis neighborhood and is endogenously determined in the inner static loop.

Opening the black box: The success of a deep neural network model often relies on
the network architecture and the hyperparameters. The machine learning models in �-
nance literature use extensive hyperparameter search in the tuning process to select the
`right' model (see Gu et al. [2020], Chen et al. [2019], etc.). The deep learning model
used in this paper does not su�er from this problem for two reasons. First, there is no
training/test/validation set really which means that one does not have to worry about
the classical over�tting problem.22 Second, and more importantly, the proposed regular-
ization mechanism encodes the economic problem into the learning algorithm by building
a meaningful loss function which enables a simple feed-forward network to arrive at the
right solution. Using complex architectures such as Convolution neural network, LSTM,
etc. create a `black-box' problem which limits the ability to understand what makes the

22The boundary conditions provide us with data points which can be thought of as training sample,
but it does not carry the same meaning as it does in supervised machine learning.
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algorithm succeed. On the contrary, using a simple feed-forward network and encoding the
economic information as regularizers provides a lot more visibility on how the model steers
towards the right solution.

The proliferation of deep learning application in the past decade can be largely at-
tributed to the automatic di�erentiation which has enabled reduced computation time of
the derivatives of functions. In the deep learning literature, the parameters of a network
are optimized through backpropogation by taking the derivative of a loss function with
respect to the parameters. The approach presented in this paper explicitly uses automatic
di�erentiation to take derivatives with respect to the space and the time dimensions. In
Figure (3), the left most part of the neural network (NN : Ĵ(z, a, t | Θ)) is the famil-
iar simple feed-forward architecture. The output from this network (Ĵ) is fed into the
PDE, boundary, and crisis network respectively that utilizes automatic di�erentiation in
the customized loss functions. The separation of fundamental neural network with a simple
architecture and the informed PDE network allows us to peek into the black-box and wit-
ness the automatic di�erentiation fully in action, which is the key driver of the algorithm's
learning in both low and high dimensions.

Hyperparameter choices: Table (1) presents the chosen hyperparameters of the model.
I use 4 hidden layers with 30 neurons each since a deep layer is empirically observed
to be better than a wide layer. While a recti�ed linear unit is the common choice for
activation function, I use a hyperbolic tangent function based on its superior performance
for the problem at hand. The optimizers are chosen based on empirical observation. I
use an adaptive momentum (ADAM) optimizer with a learning rate of 0.01 until error
is minimized to the order of 1e-4 and then use a quasi-newton method called L-BFGS-B
until convergence is ensured. The network weights and biases are initialized using Xavier
initialization in order to avoid the ubiquitous vanishing/exploding gradient problem in
deep learning (see Glorot and Bengio [2010a]). The weights of loss functions (λf , λj, λc)
are uniform to give equal importance for each of these components. I use a smaller weight
for the second bounding loss Lb. Since the training sample size is much smaller than the
full grid size, full batch is used in optimizer as opposed to mini-batches which is common
in deep learning algorithms.

2.2 Calibration

RBC parameters: The main parameter that governs the evolution of capital is the
volatility. While BS2016 uses a value of 10%, the exogenous volatility of stock market
dividends is empirically observed to be lower. In fact, the consumption volatility from
1975 till 2015 is found to be just 1.24% (HK2019). I choose a value of 6% so as to obtain
a non-negligible time variation in the prices. The productivity of the experts and the
households, and the investment cost parameter are chosen to match the average output
growth rate of 1-3% and the investment rate of 5-8%. A lower investment cost parameter
increases the investment rate but also pushes up the output.

Preferences and demographics: The discount rates are chosen to match a low average
risk free rate to re�ect the current environment.23 Although the discount rates are the same
as in BS2016, they are inclusive of the death rate which is chosen to be 3% meaning that

23The 3-month T-bill rate is 0.1% in October 2020, for exmaple.
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experts live on average for 37 years.24 The fraction of newborns designated to be the
experts is taken from Hansen et al. [2018]. I assume that the risk aversion parameter
for the households and experts are same and equal to 5. The assumption of unitary IES
greatly simpli�es the numerical computation since the consumption-wealth ratio becomes
constant.

Intermediation parameters: Finally, the equity retention threshold is set to be 0.65.
This is comparable to the value of 0.5 used in BS2016 and Hansen et al. [2018].

Description Symbol Value

Technology/Preferences

Volatility of output σ 0.06
Discount rate (experts) ρe 0.05
Discount rate (households) ρh 0.05
Depreciation rate of capital δ 0.05
Investment cost κ 5
Productivity (experts) {ae, âe, āe π, ν} {0.1,0.15,0.2,0.01,4.16}
Productivity (households) ah 0.02
Correlation of shocks ϕ 0.9

Utility
Recursive utility γe, γh, IES [5, 5, 1]

Demographics
Mean proportion of experts z̄ 0.10
Turnover λd 0.03
Experts exit rate {τnormal, τcrisis} {0.06,0.4}

Friction Equity retention χ 0.65

Table 2: Calibrated parameters in the model. All values are annualized.

The exit rate of the experts is chosen to be 6% in the normal regime and 40% in the
crisis regime re�ecting the empirical evidence of numerous bank failures during �nancial
crises. Figure (4) presents the equilibrium quantities obtained from the numerical solution.
The productivity level has a large e�ect on the capital price. A lower level of expert
productivity implies a lower capital price throughout the state space. The presence of
productivity shocks allow the return volatility to be higher than the fundamental volatility
even in the normal regime.

When the wealth share of the more productive experts is higher, capital is fully held
by them. They always operate with leverage in equilibrium and therefore, when a negative
shock hits the capital, their net worth decreases disproportionately more than that of
the households resulting in a deterioration of their wealth share. When it falls below a
threshold {z∗, a∗e}, the system endogenously enters into the crisis region featuring depressed
asset prices, and higher asset volatility. The jump in prices occurs due to the �re sale e�ect.
In the crisis region, experts start selling capital to the households who always value it less.
Hence, the capital price has to fall enough for households to purchase it and clear the
market. The fall in capital price is an ine�ciency caused by failure to internalize the
pecuniary externality by the agents. This is because each individual in the economy takes

24Gârleanu and Panageas [2015], and Hansen et al. [2018] use a value of 2% which is comparable to the
value of 3% used in this paper.
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Figure 4: Equilibrium values as functions of state variable zt for di�erent values of ae,t.

prices as given in their respective decision making process. To be more concrete, whenever
experts choose not to hold capital, they fail to take into account the fact that the households
will be forced to hold it by market clearing. Since the households value capital less, they
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will demand a higher premium resulting in a fall in the capital price. This feeds-back
into the experts balance sheet since they are leveraged, and causes further ine�ciency
and misallocation of resources. There is a second externality that the experts do not take
into consideration, which is the increase in exit rate when the system enters the crisis
region. The pricing dynamics is di�erent from the heterogeneous risk aversion literature
in complete markets (see Gârleanu and Panageas [2015], for example). With homogeneous
productivity and heterogeneous risk aversion, experts will sell capital to household during
periods of distress who will demand a higher premium (and lower price) due to their higher
risk aversion. Although both models feature a drop in prices during the crisis, the change
will be gradual in the latter. The jump in prices due to �re-sale e�ect can only be explained
from the di�erences in productivity rates in an incomplete market setting and no-shorting
constraint. There will be a state space where the experts hold all capital since the risk
premium of households is lower than that of the experts. In such states, the households
would desire to hold a negative quantity of capital but since shorting is disallowed, they will
hold no capital at all. In contrast, if the productivity of households is the same as experts,
they will face the same risk premium as experts. Therefore, even if their risk aversion
is smaller, they would desire to hold some positive quantity of capital. This makes the
transition from the normal to crisis regime smoother.25

3 Quantitative analysis

In this section, I present a simpler model without stochastic productivity and exit rate of
the experts that will serve as a benchmark model for the quantitative analysis. Through
simulation studies, I show that there is a trade-o� between the ampli�cation and the
persistence of �nancial crises in this simpler model. While there are many channels that
generate this tension, I focus on the risk aversion channel.26

3.1 Benchmark model

I assume that the productivity rate of both the experts and the households is constant such
that ae > ah holds. I also set the exit rate of the experts to zero in both the normal and the
crisis regime. With these two simpli�cations, the model reduces to BS2016 augmented with
recursive preference and OLG elements. While the agents have CRRA utility function in
BS2016, I assume that they have recursive preference so as to disentangle the risk aversion
and the inter-temporal elasticity of substitution. The rest of the assumptions carry over
from the stochastic productivity model in Section 2. That is, the output is given by AK
technology as in (1), with ae and ah as the productivity rates of the experts and the
households respectively. The evolution of capital is governed by (2) as before. The capital
price per unit qt follows the process

dqt
qt

= µqtdt+ σqt dZ
k
t

The terms µqt , and σqt are endogenously determined in the equilibrium. Note that the
productivity shocks are absent in the benchmark model. Using this dynamics for the price,

25This dynamics is present in Gârleanu and Panageas [2015]. Hansen et al. [2018] o�er additional
insights for the case of heterogeneous productivity vs heterogeneous risk aversion.

26See Appendix A.4 for details on the skin-in-the-game constraint generating a similar trade-o�.
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the return process can be written as

dRj,t =

(
aj − ιj,t
qt

+ Φ(ιj,t)− δ + µqt + σσqt

)
︸ ︷︷ ︸

µRj,t

dt+ (σ + σqt )dZ
k
t (31)

Let ξe,t and ξh,t denote the SDF of the experts and the households respectively that follows

dξj,t
ξj,t

= −rtdt− ζj,tdZk
t (32)

where, ζj,t is the market price of risk for agent j. Similar to the stochastic productivity
model, both agents invest in the risk-free asset, and hence the drift of the SDF process is
the same for all agents. The asset pricing conditions for the experts and the households
respectively take the simpler form27

ae−ιt
qt

+ Φ(ιt)− δ + µqt + σσq,t − rt
σ + σq,t

= χtζe,t + (1− χt)ζh,t (33)

ah−ιt
qt

+ Φ(ιt)− δ + +µqt + σσq,t − rt
σ + σq,t

≤ ζh,t (34)

The equality holds in (34) if the households own some amount of capital (ψt < 1). The
optimal investment rate is the same as before and is given in (10). The agents solve

sup
cj,t,χt,ψt,ιj,t

Et

[ ∫ ∞
t

f(cj,s, Uj,s)ds

]
(35)

s.t.
dwj,t
wj,t

= (rt −
cj,t
wj,t

+
χtψt
zt

(σ + σqt )ζj,t)dt+
χtψt
zt

(σ + σqt )dZ
k
t j ∈ {e, h}

where the aggregator f(cj,s, Uj,s) is given in (6). Since all agents within the group j are
identical as before, I solve for the decentralized economy with wealth share of the experts
zt as the sole state variable.

Proposition 4. The law of motion of the wealth share of experts is given by

dzt
zt

= µztdt+ σzt dZ
k
t (36)

where

µzt =
ae − ιt
qt

− ce,t
we,t

+
(χtψt
zt
− 1
)
(σ + σq,t)(ζe,t − (σ + σqt )) + (1− χt)(σ + σqt )(ζe,t − ζh,t) +

λd
zt

(z̄ − zt)

σzt =
(χtψt
zt
− 1
)
(σ + σqt )

Proof: See Appendix A.2.2.
The expression for the wealth share dynamics is similar to the model with stochastic
productivity except that only the price of risk for capital shock matters, and the exit rate

27This can be proved using the Martingale argument similar to the model with stochastic productivity.
See Appendix A.2.1 for the proof.
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τt disappears from the drift. The solution methodology is also the same as before where
equilibrium policies are determined in the static inner step and the value function is solved
in the outer time step by solving a couple of PDEs. I use an implicit �nite di�erence
method with up-winding to solve the PDEs. The up-winding preserves the monotonicity
of the PDEs and helps achieve convergence. In Appendix A.5.1, I show that the solution to
the PDEs obtained using the �nite di�erence method is the same as the solution obtained
form the neural network method.

3.2 Comparative statics:

Figure (5) plots the key equilibrium quantities for the parameters used in Table (3). The
static comparison from Figure (5) reveals that as the risk aversion increases, the price of
capital decreases and the price of risk increases. Even though the price volatility is lower
for higher risk aversion, there is a region in the parameter space where it is much higher
than the case of lower risk aversion. This is because the crisis boundary z∗ moves to the
right with increasing risk aversion. The di�erences in the market price of risk translate
to vast di�erences in the drift of the wealth share. This has a direct impact on how the
system transitions in and out of the crisis region.

Description Symbol Value

Technology/Preferences

Volatility of output σ 0.06
Discount rate (experts) ρe 0.06
Discount rate (households) ρh 0.04
Depreciation rate of capital δ 0.02
Investment cost κ 10
Productivity (experts) ae 0.11
Productivity (households) ah 0.03

Utility
CRRA utility γe, γh [1, 15]
Recursive utility γe, γh [1, 15]

Demographics
Mean proportion of experts z̄ 0.10
Turnover λd 0.03

Friction Equity retention χ 0.5

Table 3: Calibrated parameters for the benchmark model. All values are annualized.
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Figure 5: Equilibrium values as functions of state variable zt. The recursive utility plots

have IES equal to 1. Log utility has RA=1 by construction.

Stationary distribution: While Figure (5) gives us a qualitative description of the
economy, the stationary distribution of the wealth share is required to confront the model
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with the data. The stationary distribution represents the average location of the state
variable zt in the interval [0, 1] as t → ∞ for any given starting point z0. I obtain this
distribution by numerically simulating the model for 5000 years at monthly frequency. The
simulation maps the Brownian shocks Zk

t to state variable zt which is governed by the law
of motion given by (36). I repeat the procedure 1000 times and ignore the �rst 1000 years
so that the distribution is not sensitive to the arbitrarily chosen initial value z0. I annualize
the result and repeat the procedure for di�erent initial values to ensure that the economy
has converged. I explain the numerical procedure in detail in Appendix A.3. Figure (6)
plots the stationary distribution of the wealth share for di�erent risk aversion levels. As
the risk aversion increases, the mass of wealth share that lies in the crisis zone diminishes.
In fact, it shrinks rather quickly and this result also holds if I allow for heterogeneous
risk aversion with the experts being less risk averse. The stationary distribution gives us
additional insights that one cannot obtain from studying the comparative static plots. In
Figure (5), it appears as if increasing risk aversion will not have a drastic impact on the
frequency of a crisis since the boundary z∗ moves only slightly to the right. However, the
drift of wealth share moves up a lot as the risk aversion is higher and this pushes the
stationary distribution away from the crisis region to a greater extent. Since the experts
operate with leverage, a higher price of risk will have a positive e�ect on their wealth share.
Note that the crisis boundary z∗ is far from the steady state28 ẑ for higher levels of risk
aversion. This means that a much longer sequence of negative shocks are required to push
the system into the crisis region.

28The steady state can be de�ned as {zt : µz
t (zt) = 0}.
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(a) RA=1 (b) RA=5

(c) RA=10 (d) RA=20

Figure 6: Stationary distribution of wealth share. Plots (a), (b), (c), and (d) represent

benchmark model with risk aversion parameter set to 1, 5, 10, and 20 respectively. The

vertical blue line represents crisis boundary. The vertical dotted line is the mean of the

distribution.
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Comparison to Data: While the crisis point is well de�ned and endogenously deter-
mined in the model, de�ning the crisis episodes in the data is a challenge. Reinhart and
Rogo� [2009a] determine the frequency of crisis states to be around 7% for the advanced
economy. This �gure is much lower than the 29% percentage NBER recessionary periods
from year 1874 till today.29 The stark di�erence in the frequency between Reinhart and
Rogo� [2009a] and NBER data is due to the fact that in the former, recessionary periods
need to feature severe banking panic to be quali�ed as �nancial crises. This relates to the
�ndings by Muir [2017] and Gorton and Ordoñez [2020] that not all recessions are �nancial
crisis episodes. Muir [2017] �nds that the risk premium is higher during �nancial crises
than recessions, where a �nancial crisis occurs when the wealth share of intermediaries
deteriorate su�ciently, just like in the model considered in this paper. HK2019 argue that
the past decade in the US featured roughly three �nancial crisis periods. I take the prob-
ability of being in the crisis period as 3-10% for the purpose of quantitative calibration.30

For each zt simulated from the discretized version of its dynamics governed by (36), the
equilibrium quantities are computed using the mapping given the equilibrium functions.31

Following this, various model-implied moments are computed and compared to the data as
will be explained. Since the empirical risk premium is not observed, I estimate its mean and
volatility using return forecasting regression (37). I split the NBER recessionary periods
into crisis (�nancial recession) and non-crisis (non-�nancial recession) periods based on the
de�nition of Reinhart and Rogo� [2009a]. I then run predictive regressions with dividend
yield (Dt/Pt) as the regressor and 1-year ahead stock returns as the dependent variable.
Regression (I) in Table (4) uses just the dividend yield as regressor and the regressions
(II), and (III) include a dummy for non-�nancial recession and �nancial crisis respectively.
The dividend yield and stock return data are from Robert Shiller's website. I use monthly
frequency from years 1945 till 2018. The indicator functions 1Rec, and 1fin take a value 1 in
months of NBER non-�nancial recession and �nancial recession respectively. The dummy
variable corresponding to the �nancial crisis is positive and statistically signi�cant.32 The
R-squared value is also higher controlling for recession and �nancial crises indicating a
better predictive power. This con�rms the �nding in Muir [2017] that the risk premium is
much higher during �nancial crises and the predictive power is improved by conditioning
on the recessionary periods. I take the �tted value from regression (III) in Table (4) and
compute the standard deviation to obtain the volatility of the risk premium.

Re
t+1 = a+ β ∗Dt/Pt + βrec ∗ 1Rec ∗Dt/Pt + βfin ∗ 1fin ∗Dt/Pt + εt (37)

3.3 Tension between ampli�cation and persistence of crises

A trade-o� between the ampli�cation and the persistence of �nancial crises arises in the
benchmark model. One such channel that generates this trade-o� is the risk aversion of the
agents. The level of ampli�cation required to match the empirical asset pricing moments
leads to a two fold problem. First, the probability of a crisis implied by the model with high

29The percentage of NBER recessionary periods since the beginning of Federal Reserve (1914) is around
20%.

30A wide range is considered for the probability of crisis since it is undesirable to reject the success of
model based on a metric for which there is substantial disagreement in the literature.

31See Appendix A.3.4 for details.
32This �nding is robust to using di�erent time periods such as 1871-2018 (time since Shiller's data is

available), and 1914-2018 (since the start of Federal Reserve).

27



(I) (II) (III)

const -0.01 0.00 0.00
(0.02) (0.02) (0.02)

Dt/Pt 2.70*** 1.76** 1.75**
(0.47) (0.53) (0.53)

1Rec 2.12*** 1.77***
(0.42) (0.45)

1fin 2.02***
(0.69)

N 876 876 876
R2 0.06 0.10 0.11

Table 4: Predictive regression. Model I sets both dummy variables to zero. Model II sets

�nancial crisis dummy to zero. Model III uses both dummy variables.

risk aversion becomes too small to reconcile with the data. Second, and more importantly,
higher the ampli�cation, less persistent the crises episodes become. I �rst explain the
trade-o� between the ampli�cation and the probability of crisis, and then explain how a
higher ampli�cation can be attained only at the cost of a lower persistence.

Figure (7) plots the unconditional risk premium, the conditional risk premium, and the
probability of crisis. With a risk aversion equal to 1, the parameters in Table (3) lead to
7.8% probability of crisis. The unconditional mean risk premium is around 1.7%. One way
to obtain even higher risk premium is by pumping up the risk aversion. However, increasing
the risk aversion leads to the probability of crisis declining rapidly. As the values in Table
(5) suggest, to obtain an empirically observed unconditional risk premium of 7.5%, the
risk aversion has to be around 20. For this high level of risk aversion, the economy almost
never enters into the crisis state. The reason is that a higher risk premium increases
the wealth share of experts and therefore, a series of large negative shocks is required
for the wealth share to diminish enough and push the system into the crisis zone. The
standard deviation of the risk premium is 2.8% (see column 5 of Table (5)) which occurs
solely due to the non-linearity in the model between the normal and the crisis regime.
Since empirically estimating the risk premium in the crises episodes is a challenge, the
calibration is performed to match the unconditional risk premium moments. The point is
that while the comparative static plots in Figure (5) show a spike in the risk premium in
some regions of the state space, if the dynamics of the model is such that these regions are
barely reached, then the model cannot match the high risk premium in the data.

The persistence of �nancial crises is as much an important empirical phenomenon as
the ampli�cation. A direct measure of persistence is the duration. The average length of
the crisis that the model can generate is around 5-8 months, which is much shorter than
observed in the data. While there is disagreement regarding the empirical length of crises
in the literature, the consensus is that it is larger than eight months.33 Figure (8) plots the
frequency distribution of the crisis length observed in the model. Most of the mass lies in
periods less than 5 months and a crisis length of more than 10 months is probabilistically
very small. The reason for this is that the only shocks in the model are Brownian, whose
increments are i.i.d normal. Hence, a negative shock which impairs the intermediary wealth

33See He and Krishnamurthy [2013], Muir [2017] for example.

28



Figure 7: Trade o� between the unconditional asset pricing moments and the probability

of crisis for di�erent risk aversion parameters (RA). The dashed line represents Expected

risk premium (see left axis). The full line represents standard deviation of risk premium

(see right axis). Risk aversion decreases from left to right.
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Data
Benchmark Model

(RA=1)
Benchmark Model

(RA = 20)

All Recession Crisis All Crisis All Crisis

E(Risk premium) 7.5 16.6 25.0 1.7 13.4 7.3 -
Std(Risk premium) 5.1 6.5 7.4 2.8 1.3 0 -

Probability of Crisis 7 7.8 0

Table 5: Risk premium moments: model and data. All values are in annualized percent-

age.

share is on average followed by a positive shock which restores the lost wealth quickly. This
is the case despite the model featuring leveraged experts. To be more concrete, imagine
that the system has just entered the crisis period following a series of negative shocks.
From Figure (5), the capital price is lower which puts a downward pressure on the net
worth of intermediaries. However, the risk premium is higher and as the intermediaries
operate with leverage, they earn more since they hold a larger proportion of risky capital.
The latter e�ect is larger than the former and makes the drift of the wealth share high
enough to push the system back to the normal regime. When risk aversion is higher, the
risk premium e�ect is even larger resulting in the average length of the crisis to fall even
more. In other words, a larger risk aversion creates higher ampli�cation but dampens
the persistence. Figure (8) shows the average length of crisis for di�erent values of risk
aversion. As the risk aversion increases, the mass of crisis length that lies in the range 1-2
months increases. As for the mass of crisis length that lies above 2 months, the opposite
is true. This indicates that crises periods are far too infrequent when the agents are more
risk averse. The dynamics explained above corroborates with this observation.

Figure 8: Frequency distribution of average crisis duration for di�erent values of Risk

aversion (RA). The graph shows only till months 10 since the frequency for months larger

than 10 is negligible.
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This tension between the persistence and the ampli�cation is robust to the choices of
any parameter values and utility functions. In the case of CRRA utility, and recursive
utility with non-unitary IES, the consumption-wealth ratio is time varying and a�ects the
drift of the wealth share in addition to the risk premium and the capital price. However,
the e�ect of the risk premium highly dominates the other two e�ects and hence this tension
is pervasive for more general preferences as well.34 There are also other channels through
which this tension becomes evident. In Appendix A.4, I show that decreasing the skin-in-
the-game constraint leads to a more ampli�ed crisis, but reduces the persistence. When
the experts are constrained to keep a larger (smaller) fraction of the equity on their balance
sheet, the risk premium becomes larger (smaller) in the crisis state, which increases (de-
creases) the wealth share of the experts leading to a quick (late) recovery. This indicates
that the tension observed is not a matter of calibration. Regardless of how one calibrates
the model to generate a high ampli�cation to the extent that is observed in the data, the
high risk premium in the ampli�ed crisis state causes the experts to repair their balance
sheets by quickly building su�cient capital, thereby failing to match the prolonged crisis
that we see in the data.

Other moments: The benchmark model delivers an unconditional average GDP growth
rate of around 2% and an investment rate of around 5-8%. Recall that the calibration is
done to match the unconditional moments. Therefore, one measure of success of the
model is to see how well it captures the non-linearity in the data. The GDP growth rate
conditional on being in the crisis region is around -8%. The annualized GDP growth rate
during the third quarter of 2008 was -8.2%. In this respect, the model captures the non-
linearity quite well. However, the drop in investment rate implied by the model during the
crisis is not su�cient to reconcile with the data. The private investment rate fell by 8%
during the third quarter of 2008 whereas the model implied investment rate conditional
on being in the crisis is 4%. Note that even though the output of experts and households
individually move in sync with the capital due to the assumption of AK technology, the
aggregate output depends on the aggregate dividend, which is a function of the capital
share. During the crisis period, less productive households hold capital and hence the
aggregate dividend drops to a large extent, and this causes the output to drop a lot as
well. On the other hand, the investment rate is determined by the capital prices alone. The
drop in capital price during the crisis period is not large enough to generate the observed
drop in investment rate.35 The volatility of investment rate implied by the model is close
to zero. Overall, while the model captures the non-linearity in output growth, it misses
out on the non-linearity in mean and volatility of investment rate. This result is similar to
HK2019 who obtain a realistic consumption volatility but too low an investment volatility
due to the assumption of AK technology. This calls for future work to match both output
and investment dynamics. The mean leverage of intermediary sector implied by the model
with unitary risk aversion is 3.23, comparable to the empirical leverage of 3.77.36 The
model also features a counter-cyclical leverage. Even though the experts �re sell the assets

34I experiment with log, CRRA, recursive utility with IES=1, and recursive utility with IES di�erent
from 1. Appendix A solves the benchmark model with these utility functions using the �nite di�erence up-
winding scheme. The results from simulation studies for the case of all utility functions are not included in
the paper but they display the same tension between the persistence and the ampli�cation that is explained
in the paper.

35The result is not much quantitatively di�erent if one assumes a quadratic functional form instead of
logarithmic for the capital adjustment costs Φ(·).

36This number is taken from HK2019.
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to the households in periods of distress, the price of capital also drops, which depresses
the experts' equity. Since the experts operate with leverage in equilibrium, the drop in
expert equity is more than the drop in assets, which results in a rising leverage. Table
(9) shows that the correlation between the shock and the leverage ranges from -19% to
-22% for di�erent risk aversion levels. This matches the empirical correlation of -18% quite
well. However, as risk aversion increases, the level of leverage falls. Table (9) shows that
with a risk aversion level as high as 10, the leverage is 1.43, well short of the empirical
leverage of 3.77. Overall, for lower risk aversion levels, the model seems to do well in
matching the leverage patterns. Lastly, the model does not generate excess asset return
volatility (Shiller [1981]). The unconditional return volatility is more or less the same as
the exogenous fundamental volatility of 6%, even though it shoots up in the crisis state.
This is because the endogenous risk σqt becomes zero in the normal regime. The conditional
volatility, albeit high, is not large enough to make the unconditional one match the data.

Table (6) summarizes the ability of the benchmark model to succeed in di�erent aspects.
By far, matching the intermediary leverage pattern and the non-linearity in output growth
seem to be the strongest suit of the model. The model cannot resolve the tension between
unconditional risk premium, conditional risk premium, and persistence of crisis for any
reasonable parameters in calibration. The focus of the next section is to provide a resolution
to this problem.

Quantity of interest Success level Comments

Macroeconomic
GDP/Output growth High

Investment rate Low
Low variation and not enough

drop in crisis

Intermediary
Leverage High
Cyclicality of leverage High

Crises
Probability of crises Moderate

Matching prob. of crisis
attenuates crisis dynamics

Duration of crises Low Not enough persistence

Asset price

Conditional risk premium High

Unconditional risk premium Low
Matching unconditional risk
premium attenuates prob. of

crisis
Std. of risk premium Moderate -
Conditional volatility High
Unconditional volatility Low Shiller puzzle

Table 6: Model success summary.
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4 Resolution of the tension between ampli�cation and

persistence of crises

In this section, I quantify the model with stochastic productivity and exit rate of experts
and show that it resolves the tension between the persistence and the ampli�cation of
�nancial crises, and provides reasonable time variation in the prices. Figure (9) shows a
simulated sample path for the expert productivity. I assume a low mean reversion rate
(π = 1%) to generate paths that resemble a regime switching process. Positive shocks will
push the productivity to the upper limit of 20%, whereas a series of negative shocks pushes
it to a lower limit of 10%. Due to the low mean reversion rate, it takes a long time for the
process to switch towards the other limit. I assume that the system is in the crisis state
whenever ae,t is below its mean value of â and the wealth share is below the crisis threshold
z∗.37 The right panel of Figure (9) plots the stationary distribution of the wealth share
obtained through simulation.38

Figure 9: Left panel: Sample path of expert productivity. Right panel: Stationary

distribution of wealth share. Both correspond to the model with stochastic productivity.

Table (7) presents the average duration of the crisis in the benchmark model and
the stochastic productivity model and compares it against the data. There is substantial
controversy in the literature regarding the duration of crises (Reinhart and Rogo� [2009a]).
The NBER reports that the Great Recession started at December 2007 and ended at June
2009, indicating an 18 month duration.39 To facilitate comparisons, I adjust the parameters
to generate a comparable probability of the crisis in the range of 7-8% across the the
benchmark and the richer model. The numbers in Table (7) can be thought of as the
ability of various models to generate the stated duration for a reasonable crisis probability.
Both of the benchmark models deliver a duration of crisis that is much lower than in the
data. The mean duration from the richer model matches the data quite well although the

37The simulation results show that the system does enter the crisis region mostly when the productivity
is well below its mean.

38The simulation method is similar to the benchmark model except that the equilibrium quantities are
two-dimensional.

39The average duration of recession in the past 33 cycles from year 1854 to 2009 is 17.5 months. Source:
https://www.nber.org/cycles.html.
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10th and 50th percentile values are lower. The parameters used for calibrating the richer
model are shown in Table (2). Figure (10) plots the frequency distribution of the wealth

Data
(NBER)

Benchmark model
(RA=1, IES = 1)

Benchmark model
(RA=2, IES = 1.5)

My model
(RA=5, IES=1)

10th percentile 8.0 1.0 1.0 1.0
50th percentile 13.5 2.0 2.0 3.0
90th percentile 31.2 13.0 16.0 49.0
Mean 17.5 5.8 6.5 17

Table 7: The empirical data for duration of crisis (months) is from NBER website. The

model implied duration (months) is obtained for a 6% probability of crisis �xed across

models to facilitate comparison.

share during the time the system spends in the crisis region. In the benchmark model
(left panel), a lot of the mass lies near the crisis boundary of 0.11. This indicates that
once the system enters the crisis region, the experts gain wealth quickly and revert to the
normal region. In contrast, the frequency distribution of the wealth share in the crisis
region in my model, as shown in the right panel in Figure (10), features fatter tails. A
negative shock that hits the capital also lowers the productivity of the experts which in
turn reduces the risk premium that the experts earn. This puts a downward pressure on
the drift of the wealth share and helps to achieve a realistic probability of the crisis even
for higher risk aversion levels. The fact that the crisis zone features both a lower wealth
share and a lower productivity of experts can be seen in the right panel of Figure (11).
Moreover, once the system enters the crisis region, exit rate of the experts shoots up and
generates persistent crises by depressing the drift of the wealth share. Most of the mass
lie in the range of 10-11%. After spending a su�cient amount of time in the crisis zone,
the expert productivity reverts to upper level, taking the system out to the normal regime.
The variation in the investment rate, and the risk free rate is also higher compared to the
benchmark model due to the assumption of time varying experts productivity. The model
implied unconditional volatility of the risk premium is 5.3%, well in line with the empirical
value of 5.1% reported in Table (5). Overall, my model does a good job of balancing the
persistence and the ampli�cation, and delivers a reasonable time variation in the prices.
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Figure 10: Left panel: Tail of experts wealth share distribution from the benchmark

model. Right panel: Tail of experts wealth share distribution from the model with stochas-

tic productivity.

Figure 11: Left panel: Joint density of wealth share and productivity of experts along

with respective marginals. Right panel: Joint density of wealth share and productivity of

experts along with respective marginals in crisis region.
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All Crisis Normal All Crisis Normal

E[leverage] 2.80 4.79 2.62 3.23 5.50 3.10
E[inv. rate] 7.70% 2.80% 8.20% 6.00% 5.00% 6.00%
E[risk free rate] 0.90% -7.20% 1.70% 4.80% 0.00% 5.00%
E[risk premia] 6.70% 17.50% 5.70% 1.70% 13.40% 1.00%
E[price] 1.39 1.14 1.41 1.42 1.34 1.42
E[return volatility] 7.14% 11.63% 6.83% 6.20% 15.80% 5.70%
E[GDP growth rate] 1.20% -8.00% 1.90% 2.30% -7.90% 2.70%
Std[inv. rate] 3.18% 1.31% 2.91% 0.36% 1.09% 0.11%
Std[risk premia] 5.35% 1.57% 4.45% 2.82% 1.31% 0.18%
Std[risk free rate] 3.98% 1.64% 3.21% 1.19% 0.42% 0.28%
Std[GDP growth rate] 11.40% 21.00% 9.59% 7.17% 19.63% 5.15%
Corr(leverage,shock) -0.25 -0.17 -0.30 -0.28 -0.05 -0.25
Corr(price return, riskf ree rate) 0.16 -0.25 0.18 0.20 0.01 -0.23
Corr(risk premia, volatility) 0.98 0.76 0.96 0.98 -0.34 0.57

Probability of crisis 7.66% 7.80%
Duration of crisis (months) 17.0 6

Table 8: Summary of moments from the model with stochastic productivity and the

benchmark model with RA=1.
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5 Conclusion

Financial recessions are typically characterized with high risk premium and slow revival.
I have built a macro-�nance asset pricing model with intermediaries facing productivity
shocks and regime-dependent exit rate. A sequence of bad shocks reduces the net worth
of the leveraged intermediaries, and at the same time diminishes their comparative ad-
vantage over the households in terms of the productivity di�erential. A simpler model
with constant intermediary productivity and no exit rate cannot simultaneously generate
ampli�ed and persistent �nancial crises. There is a trade-o� between the conditional risk
premium, the unconditional risk premium, and the probability and duration of crises. I
show that any auxiliary feature that improves the �nancial ampli�cation channel dampens
the persistence of crisis. The model is successful in capturing the non-linearity in output
and the intermediary leverage patterns. However, the capital price does not fall enough to
match the empirical negative investment rates in times of distress.

The richer model with stochastic productivity and exit rate of the intermediaries can
resolve this tension and quantitatively generate a high risk premium, a large drop in output,
decreased �nancial intermediation, pro-cyclical leverage, and prolonged distress periods.
The model also generates a large time variation in the investment rate, which is absent in
the benchmark model. While my model generates a higher percentage drop of investment
than the benchmark model in the crisis region, the dip is still not enough to reconcile
with the empirically large disinvestment during �nancial crises. An interesting avenue for
future research is to build a model that can accommodate realistic investment dynamics
in addition to the output and the asset pricing dynamics.

I have utilized a novel method of solving the model based on active machine learning
that encodes the economic information as regularizers in a deep neural network. The
algorithm is scalable and has the potential to solve high dimensional problems with less
e�ort in coding, opening up new avenues to model asset pricing with frictions in potentially
large dimensions.
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A Appendix

A.1 Model with stochastic productivity

A.1.1 Proof of the Asset pricing conditions:

The expected return that the experts earn from investing in the capital is given by

drvt = (µRe,t − (1− χt)εh,t)dt+ χt(σ
q,k
t + σ)dZk

t + χtσ
q,a
t dZa

t

where εh,t = ζkh,t(σ
q,k
t + σ) + ζah,tσ

q,a
t +ϕ(ζah,t(σ+ σq,at ) + σq,at ζkh,t). That is, (1− χt)εh,t is the

part of the expected excess return that is paid by the experts to the outside equity holders,
which is netted out. Since the experts hold a fraction χt of the inside equity, the volatility
terms are multiplied by this quantity. Consider a trading strategy of investing $1 into the
capital at time 0. Let vt be the value of this investment strategy at time t. Then, we have
dvt
vt

= drvt , and

d(ξevt)

ξevt
= (−rt + µRe,t − (1− χt)εh,t − χtεe,t)dt+ di�usion terms

where εe,t = ζke,t(σ + σq,kt ) + ζae,tσ
q,a
t + ϕ(ζae,t(σ + σq,kt ) + ζke,tσ

q,a
t ), and ξe,t follows the process

in (5). Since ξevt is a martingale, the drift equals to zero, which implies

µRe,t − rt = χtεe,t + (1− χt)εh,t

�

A.1.2 Proof of Proposition 1

The law of motion of wealth for the households and the experts are given by equation (35).
Using the law of large numbers to aggregate the wealth of individual household and expert,
we get

dwh,t
wh,t

=

(
rt −

ch,t
wh,t
− λd + θh,t(µ

R
h,t − rt) +

(1− z̄)λd
1− zt

)
dt+ θh,t(σ + σqt )dZ

k
t + θh,tσ

a
t dZ

a
t

dwe,t
we,t

=

(
rt −

ce,t
we,t
− λd + θe,tεe,t +

z̄λd
zt

)
dt+ θe,t(σ + σq,kt )dZk

t + θe,tσ
q,a
t dZa

t

where wh,t =

∫
j∈H

wj,t and we,t =

∫
j∈E

wj,t denotes aggregated wealth among respective

group, zt =
we,t

wh,t + we,t
, and θe,t :=

χtψt
zt

, θh,t :=
1− χtψt

zt
. By Ito's lemma, the dynamics

of the wealth share becomes

dzt
zt

=
dwe,t
we,t

− d(qtkt)

qtkt
+
d〈qtkt, qtkt〉

(qtkt)2
− d〈qtkt, we,t〉

(qtktwe,t)

where
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d(qtkt)

qtkt
= (εe,t(σ + σqt )−

(ae,t − ιt)
qt

+ rt)dt+ (σ + σq,kt )dZk
t + σq,at dZa

t

d〈qtkt, qtkt〉
(qtkt)2

= (σq,kt + σ)2 + (σq,at )2 + 2ϕ(σq,kt + σ)σq,at dt

d〈qtkt, we,t〉
qtktwe,t

=
(
θe,t(σ

q,k
t + σ)2 + θe,t(σ

q,a
t )2 + 2ϕ(σq,kt + σ)σq,at

)
dt

and the result follows from here after some algebra. �

Note that we can write θe,tεe,t = θe,tχ
−1
t (µRe,t − rt − (1 − χt)εh,t) from the asset pricing

condition in A.1.1, which allows us to write the experts wealth dynamics as

dwe,t
we,t

=
(
rt −

ce,t
we,t
− λd +

ψt
zt

(µRe,t − rt)− (1− χt)
ψt
zt
εh,t +

z̄λd
zt

)
dt+

χtψt
zt

(σ + σq,kt )dZk
t +

χtψt
zt

σq,at dZa
t

A.1.3 Proof of Proposition 2

The value function conjecture is

Uj,t = Jj,t(zt, at)
k

1−γj
j,t

1− γj

where Jj,t follows the stochastic di�erential equation
dJj,t
Jj,t

= µJj,tdt + σJ,kj,t dZ
k
t + σJ,aj,t dZ

a
t

whose drift and volatility needs to be determined in the equilibrium. The HJB equation is
derived directly in terms of the capital kt instead of the wealth share zt. The value function
derivatives are

∂Uj,t
∂Jj,t

=
k

1−γj
j,t

1− γj
;

∂Uj,t
∂kj,t

= Jj,tk
−γj
j,t (38)

∂2Uj,t
∂J2

j,t

= 0;
∂2Uj,t
∂k2

j,t

= −γjJj,tk
−(1+γj)
j,t ;

∂2Uj,t
∂Jj,t∂kj,t

= k
−γj
j,t

Applying Ito's lemma to Jj,t and using HJB, we get

sup
c,θ

− ρ
Jj,tk

1−γj
j,t

1− γj
+
c

1−γj
j,t

1− γj
+
Jj,tk

1−γj
j,t

1− γj
µJj,t + Jj,tk

1−γj
j,t (Φ(ιt)− δ) (39)

− σ2γj
2
Jj,tk

1−γj
j,t + Jj,tk

1−γj
j,t (σσJ,kj,t + ϕσσJ,aj,t ) = 0
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At the optimum, the marginal utilities of wealth and consumption become equal. Using
the value function expression in terms of the wealth, we have

∂Uj,t
∂wj,t

=
∂f

∂cj,t

J̃j,tw
−γj
j,t = (1− γj)ρj

Uj,t
cj,t

=⇒ cj,t
wj,t

= ρj

The stochastic discount factor for recursive utility is given by

ξj,t = exp

(∫ t

0

∂f(cj,s, Uj,s)

∂U
ds

)
∂Uj,t
∂wj,t

Writing the value function conjecture in terms of the wealth instead of the capital, we have

Uj,t = J̃j,t
w

1−γj
j,t

1− γj
; f(cj,t, Uj,t) = (1− γj)ρjUj,t

(
logρj −

1

1− γj
J̃j,t
)

where J̃j,t =
Jj,t

(qtzt)1−γj
. The SDF then becomes

ξj,t = (1− γj)exp
(∫ t

0

[
ρj
(
(1− γj)logcj,s − log

(
(1− γj)Uj,s

)
− 1
]
ds

)
Uj,t
wj,t

This implies that σ(ξj,t) = σ

(
Uj,t
wj,t

)
. To compute the R.H.S., we have to compute the

dynamics of ∂

(
Uj,t
wj,t

)
:= ∂v(Jj,t, zt, qt, kj,t). Using the derivatives

1

v

∂v

∂Jj,t
=

1

Jj,t
;

1

v

∂v

∂zt
=

1

zt
1

v

∂v

∂q
=
−1

qt
;

1

v

∂v

∂kj,t
=
−γj
kj,t

and applying Ito's lemma, we get

∂v

v
= [. . . . . . ]︸ ︷︷ ︸

drift term

dt+ (σJ,kj,t dZ
k
t + σJ,aj,t dZ

a
t )− (σZ,kj,t dZ

k
t + σz,kj,t dZ

a
t )− (σq,kt dZk

t + σq,at dZa
t )− γjσdZk

t

Collecting the di�usion terms, using σz,ie,t = σz,it , σ
z,i
h,t = − 1

1− zt
σz,it ; i ∈ {k, a}, and compar-

ing it to the SDF equation

dξj,t
ξj,t

= −rtdt− ζkj,tdZk
t − ζaj,tdZa

t

we get the desired result. �
Plugging in the consumption-wealth ratio into the HJB equation (65), we obtain the
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expressions for µJj,t

µJe,t = (γe − 1)
(
ρe log ρe + log(qtzt)

)
− ρelogJe,t − (1− γe)(Φ(ιt)− δ −

γe
2
σ2 + σσJ,ke,t + ϕσσJ,ah,t )

µJh,t = (γh − 1)
(
ρh log ρh + log(qt(1− zt))

)
− ρhlogJh,t − (1− γh)(Φ(ιt)− δ −

γh
2
σ2 + σσJ,kh,t + ϕσσJ,ah,t )

(40)

A.1.4 Proof of Proposition 3

Applying Ito's lemma to q(zt, at), we have

∂qt =
∂qt
∂zt

dzt +
∂qt
∂at

dat +
1

2

∂2qt
∂z2

t

d〈zt, zt〉+
1

2

∂2qt
∂a2

e,t

d〈ae,t, ae,t〉+
∂2qt

∂zt∂ae,t
d〈zt, ae,t〉

Matching the drift and the volatility terms, we get

µq,t =
∂qt
∂zt

1

qt
µzt +

∂qt
∂ae,t

µae,t +
1

2

∂2qt
∂z2

t

(
(σz,kt )2 + (σz,at )2 + 2ϕσz,kt σz,at

)
+

1

2

∂2qt
∂a2

t

σ2
ae,t +

∂2qt
∂zt∂at

(
ϕσz,kt σae,t + σz,at σae,t

)
σq,kt =

∂qt
∂zt

1

qt
σz,kt

σq,at =
∂qt
∂zt

1

qt
σz,at +

∂qt
∂ae,t

1

qt
σae,t

where σa,t = ν(āe − at)(at − at) and µae,t = π(âe − ae,t) Plugging in the expression for σz,kt
and σz,at from the dynamics of wealth share (13) in the above equation and rearranging,
we get the result. �

A.1.5 Numerical solution

Static step: We need to solve for the equilibrium quantities {ψt, (σ+σq,kt ), σq,at , qt}. The
other equilibrium quantities θe,t, θh,t, ζ

k
e,t, ζ

a
e,t, ζ

k
h,t, ζ

a
h,t, rt, µ

R
e,t, µ

R
h,t, ιt can be derived from the

goods market clearing and the HJB �rst order conditions. To solve for these four quantities,
four equations are required. The �rst equation is given by subtracting the expected return
of each type of the agent. That is, we have

χt(ζ̄e,t − ζ̄h,t) = µRe,t − µRh,t

Plugging in the expression for the return processes from (4), and from Proposition 2, we
get

at − ah
qt

= χ

(
χ(ψt − zt)

(
(σq,kt + σ)2 + (σq,at )2 + 2ϕ(σ + σq,kt )

)(∂Jh,t
∂zt

1

Jh,t
− ∂Je,t

∂zt

1

Je,t
+

1

zt(1− zt)

)
(41)

+

(
∂Jh,t
∂ah,t

1

Jh,t
− ∂Je,t
∂ae,t

1

Je,t

)
σae,tσ

q,a
t + σ((σq,kt + σ) + ϕσat )(γe − γh)

)
(42)
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The second condition comes from the goods market clearing

(ztρe + (1− zt)ρh)qt = ψt(ae,t − ιt) + (1− ψt)(ah − ιt) (43)

The third and fourth conditions are the return variance components

σq,kt + σ =
σ

1− 1
qt

∂qt
∂zt

(χψt − zt)
(44)

σq,at =

1
qt

∂qt
∂ae,t

σae,t

1− 1
qt

∂qt
∂zt

(χψt − zt)
(45)

which are partial di�erential equations solved using a Newton-Raphson scheme. The algo-
rithm is given below.

Consider tensor grids of size Nz and Na with step size ∆i, and ∆j where {i}Nz1 , {j}Na1

denote the dimensions for the wealth share and the expert productivity respectively. There
are two regions in the state space: one where the capital share held by experts ψt < 1, and
one where ψt = 1. In the �rst region, the households also hold capital and hence equation
(12) holds with equality. In this case, the equations (41), (43), and 44 are used to solve for
ψt, qt, (σ + σq,kt ), and σq,at . In the second region, the households do not hold capital and
hence the equation (12) holds with an inequality. In this case, set ψt = 1, and use (44),
and (43) to solve for qt, (σ + σq,kt ), and σq,at .

• For the �rst iteration on the wealth share {i = 1,∀j}, set ψt = 0, and take the
limiting case of the goods market clearing condition to get qt. That is

inf
z→0+

qt =
ahκ+ 1

ρhκ+ 1
(46)

• For iterations i > 1,∀j, use the discretized versions of the equations (44)

(σq,k + σ)i,j = σ

(
1− 1

qi,j

(qi,j − qi−1,j

∆i

zi(
ψi,j
zi
− 1)

))−1

(47)

(σq,a)i,j =
(qi,j − qi,j−1

∆j

σae,j
)(

1− 1

qi,j

(qi,j − qi−1,j

∆i

zi(
ψi,j
zi
− 1)

))−1

(48)

along with the equations (41), and (43) to solve for qi,j, ψi,j, (σ+σq)i,j, (σ
q,a)i,j.

40 This
set of non-linear equations is solved using the Newton-Raphson method. Repeat this
procedure until ψt = 1, in which case the system enters the second region. Then, use
(43), (47), and (48) to solve for qi,j, (σ + σq,k)i,j and (σq,a)i,j.

40For j = 1, set
∂qt
∂ae,t

= 0 since ae,t ∈ [ae, āe]. That is, the lower and the upper boundaries ae and āe

respectively act as re�ecting barriers forcing the derivative of the price to be zero.
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Time step: Applying Ito's lemma to Jj,t(zt, ae,t), matching the drift terms, and aug-
menting the resulting coupled PDEs with a time step (falst-transient method), we get

µJj,tJj,t =
∂Jj,t
∂t

+
∂Jj,t
∂zt

µzt +
∂Jj,t
∂ae,t

µat +
1

2

∂2Jj,t
∂z2

t

(
(σz,kj,t )2 + (σz,aj,t )2 + 2ϕσz,kj,t σ

z,a
j,t

)
+

1

2

∂2Jj,t
∂a2

e,t

σ2
ae,t

+
∂2Jj,t
∂zt∂aa,e

(
ztσ

z,k
j,t σae,tϕ+ σaσ

z,a
j,t

)
(49)

The coe�cients µzt and σ
z
t can be computed from the equilibrium quantities in the static

step and µJj,t is computed from the equations in (40). The PDEs are solved using the neural
network method explained in Section 2.1.1. Using the updated function Jj,t, the static step
is performed again. The procedure is repeated until the function Jj,t convergence until a
pre-speci�ed tolerance level is reached.
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A.1.6 Three-dimensional plots

Figure 12: Equilibrium values as functions of state variables zt and at for the stochastic

productivity model.

48



A.2 Benchmark model

A.2.1 Asset pricing conditions

The expected return that the experts earn from investing in the capital is given by

drvt = (µRe,t − (1− χt)εh,t)dt+ χt(σ
q,k
t + σ)dZk

t

where εh,t = ζh,t(σ
q
t + σ). That is, (1 − χt)εh,t is the part of the expected excess return

that is paid by the experts to the outside equity holders, which is netted out. Consider a
trading strategy of investing $1 into the capital at time 0. Denoting vt as the value of this

investment strategy at time t, we have
dvt
vt

= drvt , and

d(ξevt)

ξevt
= (−rt + µRe,t − (1− χt)εh,t − χtεe,t)dt+ di�usion terms

where εe,t = ζe,t(σ+σqt ), and ξe,t follows the process in (32). Since ξevt is a martingale, the
drift equals to zero, which implies µRe,t − rt = χtεe,t + (1− χt)εh,t �

A.2.2 Proof of Proposition 4:

The law of motion of wealth for the households and the experts are given by equation (35).
Using the law of large numbers to aggregate the wealth of individual household and expert,
we get

dwh,t
wh,t

=

(
rt −

ch,t
wh,t
− λd +

χtψt
zt

(µRh,t − rt) +
(1− z̄)λd

1− zt

)
dt+

χtψt
zt

(σ + σqt )dZt

dwe,t
we,t

=

(
rt −

ce,t
we,t
− λd +

χtψt
zt

ζe,t(σ + σqt ) +
z̄λd
zt

)
dt+

χtψt
zt

(σ + σqt )dZt

where wh,t =

∫
j∈H

wj,t and we,t =

∫
j∈E

wj,t denotes the aggregated wealth among respective

group41, and zt =
we,t

wh,t + we,t
. By Ito's lemma, the dynamics of the wealth share becomes

dzt
zt

=
dwe,t
we,t

− d(qtkt)

qtkt
+
d〈qtkt, qtkt〉

(qtkt)2
− d〈qtkt, we,t〉

(qtktwe,t)

where

d(qtkt)

qtkt
= ((χtζe,t + (1− χt)ζh,t)(σ + σqt )−

(ae − ιt)
qt

+ rt)dt+ (σ + σqt )dZt

and the result follows from here after some algebra. �

While the main text presents and analyzes the benchmark model with recursive utility
and IES=1, I present and solve the model for a broader range of preference speci�cations.

41There is a slight abuse of notation here. The quantities wh,t and we,t represent individual households
and experts wealth, as well as the aggregated households and experts wealth.
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I consider four di�erent types of utility functions. Let

f(cj,s, Uj,s) =



ρj log(cj,t)− ρjUj,t if γj = 1, %j = 1

c
1−γj
j,t

1− γj
− ρjUj,t if γj = %−1

j 6= 1

(1− γj)ρjUj,t

(
log(cj,t)−

1

1− γj
log
(

(1− γj)Uj,t
))

if γj 6= 1, %j = 1

1− γj
1− 1

%j

Uj,t

[(
cj,t(

(1− γj)Uj,t
)1/(1−γj)

)1− 1
%j

− ρj

]
if γj 6= 1, %j 6= 1

(50)

Proposition 5. The optimal consumption policy and price of risk are given by

ĉe,t =


ρe if (log or Recursive (IES=1))

J
−1/γe
e,t (ztqt)

1−γe
γe if CRRA

J
1−%j
1−γe
e,t

(ztqt)1−%j
if Recursive (IES 6= 1 )

(51)

ĉh,t =


ρh if (log or Recursive (IES=1))

J
−1/γh
h,t ((1− zt)qt)

1−γh
γh if CRRA

J
1−%j
1−γh
h,t

((1− zt)qt)1−%j
if Recursive (IES 6= 1 )

(52)

ζe,t =


χtψt
zt

(σ + σqt ) if log

−σJe,t + σzt + σqt + γeσ if (CRRA or Recursive)
(53)

ζh,t =


(1− χtψt)

1− zt
(σ + σqt ) if log

−σJh,t −
zt

1− zt
σzt + σqt + γhσ if (CRRA or Recursive)

(54)

A.2.3 Proof of Proposition 5 :

The HJB equation is given by

sup
c,θ
f(cj,t, Uj,t) + E[dUj,t] = 0 (55)

(a) Log utility: The value function conjecture takes a logarithmic form

Uj,t = logkj,t + Jj,t(zt) = logwj,t + J̃j,t

and where the second equality follows from zt =
we,t
qtkt

= 1 − wh,t
qtkt

. Also, f(cj,t, Uj,t) =

ρjlog(cj,t)− ρjUj,t. The value function derivatives are

∂Uj,t
∂wj,t

=
dwj,t
wj,t

;
∂2Uj,t
∂w2

j,t

= −d〈wj,t, wj,t〉
w2
j,t

;
∂Uj,t

∂J̃h,t
= 1;

∂2Uj,t

∂J̃2
j,t

=
∂2J̃j,t

∂J̃j,t∂wj,t
= 0
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Applying Ito's lemma and using the HJB, we get

sup
c,θ

ρjlogcj,t − ρ(logwj,t + J̃j,t) + rt −
cj,t
wj,t

+ θj,t(σ + σqt )ζj,t −
1

2
θ2
j,t(σ + σqt )

2 + µJ̃t = 0

Taking the �rst order conditions and recognizing the fact that θe,t =
χtψt
zt

and θh,t =

(1− χtψt)
1− zt

, we get the following result for log utility.

ĉj,t = ρj (56)

ζe,t =
χtψt
zt

(σ + σqt ) (57)

ζh,t =
1− χtψt

1− zt
(σ + σqt ) (58)

(b) CRRA Utility: The value function conjecture is

Uj,t = Jj,t(zt)
k

1−γj
j,t

1− γj

where Jj,t follows the stochastic di�erential equation
dJj,t
Jj,t

= µJj,tdt+σ
J
j,tdZt whose drift and

volatility needs to be determined in the equilibrium. The HJB equation is derived directly
in terms of the capital kt instead of the wealth share zt. The value function derivatives are

∂Uj,t
∂Jj,t

=
k

1−γj
j,t

1− γj
;

∂Uj,t
∂kj,t

= Jj,tk
−γj
j,t (59)

∂2Uj,t
∂J2

j,t

= 0;
∂2Uj,t
∂k2

j,t

= −γjJj,tk
−(1+γj)
j,t ;

∂2Uj,t
∂Jj,t∂kj,t

= k
−γj
j,t

Applying Ito's lemma and using HJB, we get

sup
c,θ

− ρ
Jj,tk

1−γj
j,t

1− γj
+
c

1−γj
j,t

1− γj
+
Jj,tk

1−γj
j,t

1− γj
µJj,t + Jj,tk

1−γj
j,t (Φ(ιt)− δ) (60)

− σ2γj
2
Jj,tk

1−γj
j,t + Jj,tk

1−γj
j,t σσJj,t = 0

At the optimum, the marginal utilities of consumption and wealth become equal. Rewriting
the value function in terms of the wealth and using the mapping qtkt =

we,t
zt

=
wh,t

1− zt
, we

get the equilibrium consumption-wealth ratio

ce,t
we,t

=
(ztqt)

1−γe
γe

J
1
γe
e,t

;
ch,t
wh,t

=
((1− zt)qt)

1−γh
γh

J
1
γh
h,t

(61)
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The risk premium of the experts and the households can be derived from the stochastic
discount factor which is given by

ξj,t = ξj,0e
−ρjt
(
cj,t
cj,0

)−γj
This gives a relationship between the volatility of SDF and consumption: σξj,t = −γjσcj,t.
The consumption-capital ratio for the households and the experts is given by

ch,t
kt

=

((1− zt)qt)1/γh

J
1/γh
h,t

and
ce,t
kt

=
(ztqt)

1/γe

J
1/γe
e,t

. Combining this with the di�erential equation for

SDF
dξj,t
ξj,t

= −rtdt− ζj,tdZt

we get

ζe,t = γeσ
c
e,t = −σJe,t + σzt + σqt + γeσ; ζh,t = γhσ

c
h,t = −σJh,t −

zt
1− zt

σzt + σqt + γhσ (62)

Plugging in the optimal consumption-wealth ratio from (61) into HJB equation (60), we
get the expressions for µJj,t

µJe,t = ρe −
(ztqt)

1−γe
γe

J
1/γe
e,t

− (1− γe)
(
Φ(ιt)− δ − γeσ2

)
+ σJe,tσ) (63)

µJh,t = ρe −
((1− zt)qt)

1−γh
γh

J
1/γh
h,t

− (1− γh)
(
Φ(ιt)− δ − γhσ2

)
+ σJh,tσ) (64)

(c) Recursive Utility (IES=1): The value function conjecture is the same as that of

CRRA utility, and f(cj,tUj,t) = (1− γj)ρjUj,t
(
logcj,t −

1

1− γj
log
(
(1− γj)Uj,t

))
. Plugging

in the conjecture for value function in HJB equation (55) and applying Ito's lemma42, we
get

sup
c,θ

ρJj,tk
1−γj
t [log

cj,t
wj,t
− 1

1− γj
logJj,t + log(qtzt)] + Jj,t

k
1−γj
t

1− γj
µJj,t (65)

+ Jj,tk
1−γj
t (Φ(ιt − δ))− Jj,tk

1−γj
t

1

2
γjσ

2 + Jj,tk
1−γj
t σσJj,t = 0

As before, at the optimum, the marginal utilities of the wealth and the consumption become
equal. Using the value function expression in terms of wealth, we have

∂Uj,t
∂wj,t

=
∂f

∂cj,t

J̃j,tw
−γj
j,t = (1− γj)ρj

Uj,t
cj,t

=⇒ cj,t
wj,t

= ρj

42The value function derivatives are the same as in the CRRA case given by (59).
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The stochastic discount factor for recursive utility is given by

ξj,t = exp

(∫ t

0

∂f(cj,s, Uj,s)

∂U
ds

)
∂Uj,t
∂wj,t

Writing the value function conjecture in terms of the wealth instead of the capital, we have

Uj,t = J̃j,t
w

1−γj
j,t

1− γj
; f(cj,t, Uj,t) = (1− γj)ρjUj,t

(
logρj −

1

1− γj
J̃j,t
)

where J̃j,t =
Jj,t

(qtzt)1−γj
. The SDF then becomes

ξj,t = (1− γj)exp
(∫ t

0

[
ρj
(
(1− γj)logcj,s − log

(
(1− γj)Uj,s

)
− 1
]
ds

)
Uj,t
wj,t

This implies that σ(ξj,t) = σ

(
Uj,t
wj,t

)
. Computing the R.H.S and using

dξj,t
ξj,t

= −rtdt− ζj,tdZt

we get the desired result. Plugging in the consumption-wealth ratio and the market price
of risk into the HJB equation (65), we obtain the expressions for µJj,t

µJe,t = (γe − 1)
(
ρe log ρe + log(qtzt)

)
+ ρelogJe,t − (1− γe)(Φ(ιt)− δ −

γe
2
σ2 + σσJe,t)

µJh,t = (γh − 1)
(
ρh log ρh + log(qt(1− zt))

)
+ ρhlogJh,t − (1− γh)(Φ(ιt)− δ −

γh
2
σ2 + σσJh,t)

(66)

(d) Recursive Utility (IES di�erent from unity): The optimization problem is

sup
cj,t.θj,t,ιt

f(cj,t, Uj,t) + E[dUj,t] = 0

where

f(cj,t, Uj,t) =
1− γj
1− 1

%j

Uj,t

[(
cj,t(

(1− γj)Uj,t
)1/(1−γj)

)1− 1
%j

− ρj

]
where %j denotes the IES parameter. The conjecture for the value function is

Uj,t = Jj,t(zt)
k

1−γj
j,t

1− γj

where Jj,t follows the stochastic di�erential equation
dJj,t
Jj,t

= µJj,tdt + σJj,tdZt whose drift

and volatility needs to be determined in the equilibrium.43

43Since the value function conjecture is the same as in CRRA case, the value function derivatives are
given by (59).
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The HJB equation is derived directly in terms of the capital kt instead of the wealth
share zt. Applying Ito's lemma and using the HJB, we get

sup
c,θ

1

1− 1
%j

(
c

1− 1
%j

j,t

J

1− 1
%j

1−γj
j,t k

1− 1
%j

j,t

− ρj

)
Jj,tk

1−γj
j,t +

Jj,tk
1−γj
j,t

1− γ
µJj,t + Jj,tk

1−γj
j,t (Φ(ιt)− δ) (67)

− σ2γj
2
Jj,tk

1−γj
j,t + Jj,tk

1−γj
j,t σσJj,t = 0

At the optimum, the marginal utilities of the consumption and the wealth become equal.
Rewriting the value function in terms of the wealth and using the mapping qtkt =

we,t
zt

=

wh,t
1− zt

, we have

∂fe,t
∂ce,t

= c
− 1
%e

e,t J

1
%e

−γe
1−γe

e,t (ztqt)
γj− 1

%e

∂fh,t
∂ch,t

= c
− 1
%h

h,t J

1
%h

−γh
1−γh

h,t ((1− zt)qt)
γj− 1

%h

∂Ue,t
∂we,t

=
Je,t

(ztqt)1−γe
w1−γe
e,t

∂Uh,t
∂wh,t

=
Jh,t

((1− zt)qt)1−γh
w1−γh
h,t

Equating the marginal values, we get the respective optimal consumption-wealth ratios

ce,t
we,t

=
J

1−%e
1−γe
e,t

(ztqt)1−%e
;

ch,t
wh,t

=
J

1−%h
1−γh
h,t

((1− zt)qt)1−%h
(68)

The stochastic discount factor for recursive utility is given by

ξj,t = exp

(∫ t

0

∂f(cj,s, Uj,s)ds

∂U

)
∂Uj,t
∂wj,t

Writing the value function conjecture in terms of the wealth instead of the capital, we have

Uj,t = J̃j,t
w

1−γj
j,t

1− γj
; f(cj,t, Uj,t) =

J̃j,tw
1−γj
j,t

1− 1
%j

[(
cj,t
wj,t

)1− 1
%j

J̃

1− 1
%j

γj−1

j,t − ρj

]

where J̃j,t =
Jj,t

(qtzt)1−γj
. Plugging in the above expression in the stochastic discount factor,

we notice that σ(ξj,t) = σ
(Uj,t
wj,t

)
. Computing the R.H.S and using

dξj,t
ξj,t

= −rfdt− ζj,tdZt
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we get the following result.

ζe,t = −σJe,t + σzt + σqt + γeσ (69)

ζh,t = −σJh,t −
zt

1− zt
σzt + σqt + γhσ (70)

Substituting the consumption-wealth ratio into the HJB equation (67), we the expression
for µJj,t

µJe,t =
(γe − 1)

1− 1
%e

(
(qtzt)

%e−1J
1−%e
1−γe
e,t − ρe

)
− (1− γe)(Φ(ιt)− δ −

γe
2
σ2 + σσJe,t) (71)

µJh,t =
(γh − 1)

1− 1
%h

(
(qt(1− zt))%h−1J

1−%h
1−γh
h,t − ρh

)
− (1− γh)(Φ(ιt)− δ −

γh
2
σ2 + σσJh,t)

(72)

This proves the proposition. �

A.3 Numerical solution method

A.3.1 Model solution (Log utility):

I rely on the solution technique from BS2016 and Hansen et al (2018) that solves the partial
di�erential equations using an up-winding �nite di�erence scheme. The method involves a
static inner loop that solves for the equilibrium quantities {ψt, (σq,t + σ), qt}, and an outer
loop that updates the value function from Jj,t to Jj,t−∆t using a �nite di�erence method,
similar to the model with stochastic productivity.

Static step: To solve for the quantities in inner loop, three equations are required. The
�rst equation is given by subtracting the portfolio choices of the households and the experts.
That is, we have

(θe,t − θh,t)(σqt + σ)2 = µRe,t − (µRh,t)

Plugging in the expressions for µRe,t, µ
R
h,t from the return process (31), and using θe,t =

χtψt
zt

as well as from the capital market clearing condition θh,t =
1− χtψt

1− zt
, we get

χtψt − zt
zt(1− zt)

(σqt + σ)2 =
ae − ah
qt

(73)

The second equation comes from the goods market clearing condition

(ztĉe,t + (1− zt)ĉh,t)qt = ψt(ae − ιt) + (1− ψt)(ah − ιt) (74)

where ιt =
qt − 1

κ
. For the third equation, apply Ito's lemma to q(zt) and match the drift

and the volatility terms to get σqt =
∂qt
∂zt

1

q
σzt . Combining this with the volatility of wealth
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share, we get
σqt + σ =

σ

1− ∂qt
∂zt

1
q
(χtψt
zt
− 1)

(75)

Equations (73), (74), and (75) are solved using the Newton-Raphson method44 yielding
{ψt, (σq,t+σ), qt}. In the case of log utility, the static step is enough since the consumption-
wealth share is equal to the discount rate and the risk premium is not dependent on Jj,t.

A.3.2 Model solution (CRRA and Recursive utility):

The portfolio choice in the case of CRRA and recursive utility includes the hedging demand
that needs to be taken into account. From equations (33) and (34), we get

ae − ah
qt(σ + σqt )

≥ χ(ζe,t − ζh,t)

with equality if ψt = 1. Plugging in the expressions for ζe,t and ζh,t from proposition (5),
we have

ae − ah
qt

= χ

(
1

Jh,t

∂Jh,t
∂zt
− 1

Je,t

∂Je,t
∂zt

+
1

zt(1− zt)

)
(χψt − zt)(σ + σqt )

2

ae − ah
qt

= χ

(
σJh,t − σJe,t +

σzt
1− zt

)
(σ + σqt )

where the second expression comes from using the dynamics of the wealth share (36).45 The
goods market clearing condition (74) and return volatility (75) remain the same. Similar to
the case of log utility, the Newton-Raphson method is used to solve for the {ψt, qt, (σ+σqt )}.
Given these equilibrium functions, Jj,t needs to be solved for, which is done in the dynamic
time step.

Time step: Applying Ito's lemma to Jj,t(zt), matching the drift terms, and augmenting
the resulting coupled PDEs with a time step (falst-transient method), we get

µJh,tJh,t =
∂Jh,t
∂zt

µzt +
1

2

∂2Jh,t
∂z2

t

(σzt )
2 (76)

µJe,tJe,t =
∂Je,t
∂zt

µzt +
1

2

∂2Je,t
∂z2

t

(σzt )
2 (77)

The coe�cients µzt and σ
z
t can be computed from the equilibrium quantities in the static

step and µJj,t is computed from the equations in (66). The PDEs are solved using an implicit
method with an up-winding scheme explained in the next part.

44BS2016 and Hansen et al. [2018] provide details of the algorithm. The state space is segmented into
the crisis region and the normal region. The static step is solved for iteratively until the system enters the
crisis region in which case the capital share ψ is set to 1 and the remaining quantities (qt, σ

q
t ) are solved

for using equations (74) and (75).

45Note that by Ito's lemma, we have σj,t =
1

Jj,t

∂Jj,t
∂zt

σz
t =

1

Jj,t

∂Jj,t
∂zt

(θe,t − 1)(σ + σq
t )2
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A.3.3 Up-winding scheme

The PDEs (76) are solved by considering arti�cial time-derivatives. To be speci�c, the
modi�ed system

0 =
∂Jh,t
∂t
− µJh,tJh,t +

∂Jh,t
∂zt

µzt +
1

2

∂2Jh,t
∂z2

t

(σzt )
2 (78)

0 =
∂Je,t
∂t
− µJe,tJe,t +

∂Je,t
∂zt

µzt +
1

2

∂2Je,t
∂z2

t

(σzt )
2 (79)

is solved backwards in time with the corresponding terminal conditions (Jh,T , Je,T ). Con-
sider a general quasi-linear PDE of the form

A

(
z, g,

∂g

∂z

)
+ tr

[
B

(
z, g,

∂g

∂z

)
∂2g

∂z2
B

(
z, g,

∂g

∂z

)′]
+
∂g

∂t
= 0

Consider a two-dimensional grid of size Nz and Nt with step sizes ∆i and ∆j respectively
where {i}Nz1 ,{j}Nt1 denote the dimensions for space and time respectively. The function
g(zt, t) evaluated at (i, j) is denoted as gi,j. The derivatives of the function are discretized
as

∂̂gi,j

∂̂z
= (µzj)

+ gi+1,j − gi,j
∆i

+ (µzj)
− gi,j − gi−1,j

∆i

∂̂2gi,j

∂̂z2
=
gi+1,j − 2gi,j + gi−1,j

∆2
i

∂̂gi,j

∂̂t
=
gi,j+1 − gi,j

∆j

where (µzj)
+ =

{
µzt if µzt > 0

0 if otherwise
(µzj)

− =

{
µzt if µzt < 0

0 if otherwise
Discretizing the derivatives at j + 1 and applying it to the PDE, we get

gi,j+1 = gi,j+∆j

{
A

(
z, gi,j+1,

∂̂gi,j+1

∂̂z

)
+tr

[
B

(
z, gi,j+1,

∂̂gi,j+1

∂̂z

)
∂̂2gi,j+1

∂̂z2
B

(
z, gi,j+1,

∂̂gi,j+1

∂̂z

)′]}
Solving for gi,j+1 requires solving a linear system of equations which can be done using
a standard procedure such as the Richardson method. The up-winding scheme ensures
monotonicity of the numerical scheme (see d'Avernas and Vandeweyer (2019)). Since the
method is implicit, a large time step can be set which considerably reduces the computation
time.

A.3.4 Numerical simulation:

The state variable in the model is zt whose law of motion is governed by the equation (36).
Once the mapping between zt and (µzt , σ

z
t ) are determined numerically from the previous

section, we can simulate zt using an Euler-Maruyama scheme. Speci�cally, the task is to
simulate

dzt = µztdt+ σzt dZt
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where the shock dZt is the standard Brownian motion. The law of motion is discretized as

zt+∆t = zt + µz(zt)∆t+ σzt (zt) ∗
√

∆tZ

where Z ∼ N(0, 1). The steps are as follows

1. Set z0 to an arbitrary initial value, say 0.5.

2. Simulate Z from the standard normal distribution and compute zt+∆t using the dis-
cretized equation for ∆ = 1/12. The mapping between zt and (µzt , σ

z
t ) is in a grid

since it is solved for numerically and hence I use a spline interpolation to obtain the
intermediate values.

3. Repeat the procedure for z1, z2, ... and obtain {zt}60,000
1 . That is, the simulation is

done for 5000 years at monthly frequency.

The �rst 1000 years are eliminated so as to reduce the dependency on the initial condition.
I experiment with di�erent initial values to make sure that the obtained distribution is
indeed stationary. The procedure is repeated for 1000 times and Figure (6) plots the
resulting distributions.

Comparison with Fokker-Planck equation: The density of the wealth share g(zt, t)
can be expressed in the form of Fokker-Planck (or Kolmogorov Forward Equation) equation

∂g(zt, t)

∂t
= − ∂

∂zt
(µzt g(zt, t)) +

1

2

∂2

∂z2
t

((σzt )
2g(zt, t))

We have lim
zt→0+,zt→1−

σzt = 0 by construction and ( lim
zt→0+

µzt > 0, lim
zt→1−

µzt < 0) due to the

overlapping generations assumption. This forces the distribution to be non-degenerate.

Also, a stationary density implies that
∂g

∂t
= 0. Thus, we can integrate the Fokker-Planck

equation to obtain

0 = constant− (µzt g(zt)) +
1

2

∂

∂zt
((σzt )

2)g(zt)

I solve this equation numerically using an explicit �nite di�erence scheme and compare it
with the stationary distribution obtained through the simulation. Figure (13) shows that
the density obtained from the simulation is a good approximation for the theoretical density
dictated by the Focker-Planck equation. The simulated wealth share is annualized so as to
make the comparison with the empirical data. The proportion of annualized wealth share
that fall below the theoretically obtained crisis boundary z∗ is taken to be the probability
of crisis implied by the model. Table (9) presents the moments of equilibrium quantites
obtained using the annualized wealth share

A.4 Other trade-o�s in the benhmark model

One key quantity that governs the time spent in the crisis region is the drift of the wealth
share. The parameter λd controls the death rate of experts which is necessary to ensure
model stationarity. As the death rate increases, all else equal, the system stays in the
crisis region longer. A similar e�ect is observed when the mean proportion of experts z is
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Figure 13: Comparison of the stationary density obtained from Focker-Planck equation

and the simulation for the benchmark model with RA=1.

decreased. Figure (14) presents the static comparison of the drift of the wealth share for
di�erent values of λd and z. A higher death rate pushes the system into the crisis region
by making the drift of wealth share more negative in the normal regime. However, there
is only a minimal e�ect on the drift once the system enters the crisis region. The second
panel varies the mean population share of experts by keeping the death rate �xed. As the
population share decreases, the drift becomes more negative making the crisis more likely.
Once the system enters the crisis region, the drift becomes less positive pushing the system
back into the normal regime at a slower rate. Both of these e�ects work towards increasing
the frequency of crisis. Figure (15) shows the probability of crisis for several values of λd

Figure 14: Left panel shows the drift of wealth share for two di�erent values of death

rate λd for z �xed at 0.1. The second panel shows the drift of wealth share for two di�erent

values of mean expert population for λd �xed at 0.02. The risk aversion is set to 2 for both

the plots.

and z for the recursive utility model with IES=1 and risk aversion equal to 2. To obtain a
7% probability of crisis, the population share of experts have to be less than 10%, with a
death rate of 3%. Since the discount rate assumed in the model is inclusive of death rate, a
3% death rate means that the households do not discount at all. The second panel of Figure
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(15) reveals that changing the OLG parameters doesn't a�ect unconditional risk premium
much. While it is possible to achieve a realistic probability of crisis and unconditional risk
premium simultaneously, this comes at the cost of extremely high death risk, and more
importantly, it still does not generate persistent recessions. This is because the duration
of the crisis is una�ected by a high death risk and thus leads to a quick recovery.

Figure 15: Left panel shows the drift of wealth share for two di�erent values of exit rate

λd for z �xed at 0.1. The right panel shows the drift of wealth share for two di�erent values

of mean expert population for λd �xed at 0.02. Both plots are from recursive utility model

with risk aversion equal 2 and IES=1.

Tightening �nancial constraint: One of the key assumptions of the model is the
inability of experts to fully issue outside equity. The parameter χ governs how much equity
the experts are forced to retain and hence it is of interest to study the model by varying
this parameter. As the �nancial constraint tightens, the probability of crisis increases.
The left panel of Figure (16) plots the risk premium of experts for three di�erent values
of the skin-in-the-game constraint. As the constraint increases, the crisis boundary shifts
to the right but the unconditional risk premium is lower. This e�ect can be seen in the
simulation result on the right panel of Figure (16). While a higher value of χ leads to a
higher probability of the crisis, the conditional risk premium drops drastically leading to
only a marginal increase in the unconditional premium.
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Figure 16: Left panel: Static comparison of the risk premium by changing the skin-in-the

game constraint for the baseline model with RA=1 and IES=1. Right panel: Trade o�

between the conditional risk premium and the probability of crisis by varying the skin-in-

the-game constraint. The parameter χ increases from left to right. Left (dashed line) and

right (blue line) axes correspond to the unconditional and the conditional risk premium

respectively.
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A.5 Deep learning methodology

A.5.1 One-dimensional model

I �rst present the solution to the benchmark model using deep learning method and then
demonstrate how and why it is easy to scale to higher dimensions by presenting the solution
to richer model with two state variables. I consider the case of recursive utility with
IES=1 and RA=2 for demonstration.46 The PDE that needs to be solved is given in (78).
Construct a neural network Ĵ(z, t | Θ) and de�ne the PDE residual to be

f :=
∂Ĵ

∂t
+
∂Ĵ

∂z
µz +

1

2

∂2Ĵ

∂z2
(σz)2 − µJ Ĵ

The network architecture is given in Figure (18) with the hyperparameters in Table
(1).47 Figure (17) plots the full grid and the training sample. The inner static loop uses a
grid size of 1000 points in space dimension while the neural network only uses 300 points
for training. In the case of a single space dimensional model, sampling one-third of the
grid points is enough to �nd the right solution. In higher dimensions, the proportion of
grid points required as training sample can be set much lower than one-third.

Figure 17: Grid used in numerical procedure: 1D model.

I illustrate the simplicity of coding the neural network solution using code snippets that
uses Tensor�ow library. The �rst step is to construct a neural network Ĵ using the space
and time dimensions as training data, and weights and biases as parameters initialized
arbitrarily.48 This is illustrated in the code snippet (1) and it corresponds to the left
most feed-forward neural network (NN : Ĵ(z, t | Θ)) in Figure (18). The next step is to
construct the regularizers using PDE residual as given in code snippet (2). This forms the
PDE network in Figure (18). The PDE coe�cients (advection, di�usion, and linear terms)
are taken as given and form part of the training sample. The automatic di�erentiation

46The deep learning algorithm works for any type of utility function. For larger risk aversion values, it
takes longer to achieve convergence due to the highly non-linear value function near the boundaries.

47The algorithm works even for 2 hidden layers with 30 neurons each instead of 4 hidden layers but may
be prone to instabilities for some extreme parameter values such as setting χ = 0.1. It is recommended to
have four layers to capture the non-linearity well.

48I use Xavier initialization to avoid the vanishing gradient problem.
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Figure 18: Network architecture: benchmark model.

in Tensor�ow (tf.gradients) enables fast computation of derivatives in the regularizers
which guides the parameterized neural network Ĵ towards the right solution even when the
training sample is small. In addition to the PDE bounding loss, one can easily set up the
boundary loss and crisis region loss in a similar fashion.

1 def J(z,t):
2 J = neural_net(tf.concat ([z,t],1),weights ,biases)
3 return J
4

Listing 1: Approximating J using a neural network: 1D model

1 def f(z,t):
2 J = J(z,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_zz = tf.gradients(J_z ,z)[0]
6 f = J_t + advection * J_z + diffusion * J_zz - linearTerm
7 return f

Listing 2: Constructing regularizer: 1D model

Since the analytical solution to the benchmark model is not available, I compare the
neural network solution with the those obtained from the �nite di�erence method explained
in Appendix (A.3.3). Figure (19) shows the comparison. They are not only qualitatively
similar, they are quantitatively the same up to the order of 1e-4.

A.5.2 Two-dimensional model

The PDE that needs to be solved in the two-dimensional model is given in (23). As in the
case of one-dimensional model, construct the neural network Ĵ(z, a, t | Θ) with the PDE
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Figure 19: Comparison of equilibrium quantities using �nite di�erence and neural network

in one-dimensional benchmark model.

residual taking the form

f :=
∂Ĵ

∂t
+
∂Ĵ

∂z
µz +

∂Ĵ

∂z
µa +

1

2

∂2Ĵ

∂z2

(
(σz,k)2 + (σz,a)2 + 2ϕσz,kσz,a

)
+

1

2

∂2Ĵ

∂a2
a

σ2
a

+
∂2Ĵ

∂zt∂a

(
zσz,kσaϕ+ σaσ

z,a
)
− µJ Ĵ

The network architecture and hyperparameters are given in Figure (3) and (1) respec-
tively. The grid size becomes larger compared to the one-dimensional model but the chosen
training sample size is 3000 which is much smaller than the full grid size of 30,000 as is
illustrated in Figure (20).

To appreciate the simplicity involved in scaling to higher dimensions, I present the
code snippets for the 2D model in (3) and (4). Similar to the 1D model, the neural
network J is parameterized the same way except that the network takes three inputs-
two space dimensions (z, a) and one time dimension (t). This corresponds to the leftmost
feed-forward neural network in Figure (3) where three neurons enter the network instead
of two as in Figure (18). The construction of regularizer as shown in code snippet (4)
simply adds new derivative terms to the PDE network taking as given the coe�cients
(advection, di�usion, linear, and cross terms). Moving from one to two dimensions in
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Figure 20: Grid used in numerical procedure: 2D model. The full grid contains 30,000

points and the training sample contains 3000 points.

an implicit �nite di�erence method is not trivial since one has to set up the system of
linear equations to be solved numerically. In even higher dimensions, as demonstrated
in Gopalakrishna (2020), the PDE network simply adds further derivative terms. This is
easier to do in comparison with setting up the system of equations. In dimensions more
than two with correlated state variables, preserving monotonicity of the numerical schemes
adds further complications, which the neural network method sidesteps. The literature
has used advanced C++ tools like Paradiso (see Hansen et al. [2018]) which requires much
more e�ort than simply augmenting the PDE network. Since most of the heavy lifting is
done by the automatic di�erentiation in the regularizers, learning in high dimensions is
accomplished e�ectively through a few lines of coding.

1 def J(z,a,t):
2 J = neural_net(tf.concat ([z,a,t],1),weights ,biases)
3 return J
4

Listing 3: Approximating J using a neural network: 2D model

1 def f(z,a,t):
2 J = J(z,a,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_a = tf.gradients(J,a)[0]
6 J_zz = tf.gradients(J_z ,z)[0]
7 J_aa = tf.gradients(J_a ,a)[0]
8 J_az = tf.gradients(J_a ,z)[0]
9 f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

10 diffusion_a * J_aa + crossTerm * J_az - linearTerm
11 return f

Listing 4: Constructing regularizer: 2D model
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B Online Appendix

B.1 Benchmark model

Solving the incomplete market capital misallocation model with �re-sales and endogenous
regimes involves numerical techniques that are non-standard from the asset pricing litera-
ture viewpoint. In addition to the complexity involving in solving the PDEs, the coe�cients
of the PDEs change with respect to the form of utility function. Thus, comparing model
solutions across di�erent utility speci�cations require manual intervention to modify the
equations in static step, and the PDE coe�cients. Part of the contribution of this paper
is to o�er a simpler way to perform comparative valuation dynamics through numerical
libraries made available49 at https://github.com/goutham-epfl/MacroFinance. The
simplicity of using the library is that model can be solved and simulated in a few lines
facilitating comparative valuation. Code snippet (5) presents an example of solving the
model with di�erent utility speci�cations. Code snippet (6) shows examples of simulating
di�erent models from the general framework.

49Advanced users can also choose among implicit and explicit �nite di�erence schemes to solve the
model, use di�erent interpolation methods, and modify the frequency of time used in the simulation.
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1 from model_recursive_class import model_recursive
2 from model_class import model
3 from model_general_class import model_recursive_general
4 import matplotlib.pyplot as plt
5

6 #Input parameters
7 params ={'rhoE': 0.06, 'rhoH': 0.03, 'aE': 0.11, 'aH': 0.03,
8 'alpha':0.5, 'kappa':7, 'delta ':0.025 , 'zbar':0.1,
9 'lambda_d ':0, 'sigma':0.06 , 'gammaE ':2, 'gammaH ':2, 'IES =1.5'

}
10

11 #solve model1
12 model1 = model_recursive_general(params)
13 model1.solve()
14

15 #solve model2
16 #switch to model with unitary IES
17 params['IES'] =1.0
18 #solve model
19 model2 = model_recursive(params)
20 model2.solve()
21

22 #plot capital price (Q) from the model1 and model2
23 plt.plot(model1.Q), plt.plot(model2.Q)

Listing 5: Solving the model using Python library
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1 from model_recursive_class import model_recursive
2 from simulation_model_class import simulation_benchmark
3

4

5 #Input parameters
6 params ={'rhoE': 0.06, 'rhoH': 0.03, 'aE': 0.11, 'aH': 0.03,
7 'alpha':0.5, 'kappa':7, 'delta ':0.025 , 'zbar':0.1,
8 'lambda_d ':0, 'sigma':0.06 , 'gammaE ':2, 'gammaH ':2, 'IES =1.0'

}
9 #set number of simulations

10 params['nsim'] = 500
11 params['utility '] = 'recursive '
12 #simulate model1
13 simulate_model1 = simulation_benchmark(params)
14 simulate_model1.compute_statistics ()
15 print(simulate_model1.stats) #print key statistics
16 simulate_model1.write_files () #store key statistics for later use
17

18 #simulate model2
19 #change volatility
20 params['sigma'] =0.10
21 simulate_model2 = simulation_benchmark(params)
22 simulate_model2.compute_statistics ()
23

24 #compare stationary distribution from two models
25 plt.plot(simulate_model1.z_sim.reshape (-1))
26 plt.hist(simulate_model2.z_sim.reshape (-1))

Listing 6: Simulating the model using Python library
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